Preprint ANL/MCS-P864-1200

ON USING THE ELASTIC MODE IN NONLINEAR
PROGRAMMING APPROACHES TO MATHEMATICAL
PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
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Abstract. We investigate the possibility of solving mathematical programs with complemen-
tarity constraints (MPCCs) using algorithms and procedures of smooth nonlinear programming.
Although MPCCs do not satisfy a constraint qualification, we establish sufficient conditions for their
Lagrange multiplier set to be nonempty. MPCCs that have nonempty Lagrange multiplier sets and
that satisfy the quadratic growth condition can be approached by the elastic mode with a bounded
penalty parameter. In this context, the elastic mode transforms MPCC into a nonlinear program
with additional variables that has an isolated stationary point and local minimum at the solution
of the original problem, which in turn makes it approachable by sequential quadratic programming
algorithms. One such algorithm is shown to achieve local linear convergence once the problem is re-
laxed. Under stronger conditions, we also prove superlinear convergence to the solution of an MPCC
using an adaptive elastic mode approach for a sequential quadratic programming algorithm recently
analyzed in an MPCC context by Fletcher and al. [16]. Our assumptions are more general since we
do not use a critical assumption from that reference. In addition, we show that the elastic parameter
update rule will not interfere locally with the super linear convergence once the penalty parameter
is appropriately chosen.
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1. Introduction. Complementarity constraints can be used to model numerous
economics or engineering applications [27, 33]. Solving optimization problems with
complementarity constraints may prove difficult for classical nonlinear optimization,
however, given that, at a solution x*, such problems cannot satisfy a constraint qual-
ification [27, Chapter 3]. As a result, algorithms based on the linearization of the
feasible set, such as sequential quadratic programming (SQP) algorithms, may fail
because feasibility of the linearization can no longer be guaranteed in a neighborhood
of the solution [27].

Several methods have been recently proposed to accommodate such problems.
For example, a nondifferentiable penalty term in the objective function can be used
to replace the complementarity constraints [28], while maintaining the same solution
set. Although the new problem may now satisfy the constraint qualification the non-
differentiability of the objective function is an obstacle to the efficient computation of
an optimal point, at least from the practical perspective of the range of available soft-
ware. Another method is the disjunctive nonlinear programming (disjunctive NLP)
approach [27], though this may lead to a large number of subcases to account for
the alternatives involving degenerate complementarity constraints. If all constraint
functions, with the exception of the complementarity constraints, are linear, then
efficient active set approaches can be defined, if the linear independence constraint
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qualification holds [20]. Still other approaches have been defined for problems whose
complementarity constraints originate in equilibrium conditions [27].

A nonsmooth approach has been proposed in [33] for MPCCs in which the un-
derlying complementarity constraints originate in a variational inequality with strong
regularity properties. A bundle trust-region algorithm is defined in which each ele-
ment of the bundle is generated from the generalized gradient of the reduced objective
function. The key step is to produce an element of the generalized gradient [33, Equa-
tions (7.24), (7.25)], which may be quite costly for general cases at points where there
are a substantial number of degenerate complementarity constraints.

In this work we investigate the possibility of solving MPCCs by applying cer-
tain SQP algorithms to their nonlinear programming formulation. This endeavor is
important because it allows one to extend the considerable body of analytical and
computational expertise of smooth nonlinear programming to this new class of prob-
lems. The advantage of such an approach over disjunctive programming, for example,
is that it considers simultaneously all the alternatives involving degenerate comple-
mentarity constraints. The disadvantage is that the description of the constraint set
is considerably less well behaved.

Recognizing that the potential infeasibility of the subproblems with linearized
constraints may prevent normal termination of SQP algorithms, we discuss their use
in conjunction with the elastic mode [22]. The elastic mode is a standard technique of
approaching infeasible subproblems by relaxing the constraints and introducing a dif-
ferentiable penalty term in the objective function. To show that such an approach can
accommodate a large class of MPCCs, we use the framework from [36] to determine
sufficient conditions for MPCCs to have nonempty Lagrange multiplier sets.

As in [36], the first- and second-order optimality properties of an MPCC are com-
pared with the similar properties of two nonlinear programs that involve no comple-
mentarity constraints and may thus satisfy a constraint qualification. Here, however,
we consider the optimality properties of an MPCC formulated as a nonlinear program
with differentiable data. In [36] the MPCC is equivalently described with the comple-
mentarity constraints replaced by an equality involving the nondifferentiable function
min {z1,z2}. The two formulations will ultimately have similar properties, but the
smooth description is important in anticipation of the use of a standard nonlinear
programming algorithm to solve MPCCs.

The elastic mode approach we present here is different from other nonlinear pro-
gramming approaches for MPCC in the following important respect. Virtually all
smooth nonlinear programming approaches currently described in the literature for
finding a solution z* of MPCC consist of transforming it into another nonlinear pro-
gram depending on a parameter p, MPCC(p) and then finding the solution zP of the
modified problem [23, 27, 37]. The problem MPCC(p) will have enough constraint
regularity for 2P to be found reasonably efficiently. The solution z* is then obtained
in the limit as p — 0, and 2P # a* for any p. The program MPCC(0) is undefined,
or does not satisfy a constraint qualification (if the parameter is a penalty parameter
¢, the same observation is valid by choosing p = %)

For the elastic mode, under conditions to be specified in the body of this work,
MPCC is transformed into a problem MPCC(c) that satisfies a constraint qualification
and has z* as a local solution for all ¢ sufficiently large but finite. So MPCC is
transformed by a finite procedure in a nonlinear program with the same solution that
satisfies a constraint qualification, which does not happen for the other approaches.
To our knowledge, at the time of the initial issue of this technical report in December
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2000, the developments presented here are the first systematic approach of this type
that is valid for a generic instance of mathematical programs with complementarity
constrains.

We note that SQP was applied before in connection with a smoothing method
for MPCC [19]. However, that approach is different from the one used here, in that
the smoothing parameter had to be taken to a limit point, at which the nonlinear
programming constraint qualification did not hold. In the context described here, that
approach is closer to the MPCC(p) approach presented in the preceding paragraphs,
though its appeal is that for a given smoothing parameter, the resulting problem was
not solved until convergence, as opposed to other MPCC(p) approaches.

The paper is structured as follows. In the remainder of Section 1 we review the
relevant nonlinear programming concepts. In Section 2 we discuss sufficient conditions
for MPCC to have a nonempty Lagrange multiplier set, in spite of not satisfying a
constraint qualification at any point. This allows us to argue in Section 3 that the
elastic mode applied to an instance of the MPCC class will retrieve a local solution
of the problem for a finite value of the penalty parameter, a point which is supported
by several numerical examples. In section 4 we prove that an adaptive elastic mode
approach built around an algorithm recently analyzed in Fletcher and al. [16] in
the MPCC context will result in super linear convergence near the solution of an
MPCC under assumptions weaker than in [16]. Specifically, here we do not assume
that the iterates are either feasible or satisfy the complementarity constraints for
the unrelaxed problem. In addition, we show that the elastic parameter update rule
will not affect locally the super linear convergence once the penalty parameter is
appropriately chosen.

1.1. Optimality Conditions for General Nonlinear Programming. We
review the optimality conditions for a general nonlinear program

(1.1) II{LIH f(z) subject to g(x) <0, h(z) = 0.

Here g : R™ — R™, h:R"™ — R". We assume that f , g, and h are twice continuously
differentiable.

We call z a stationary point of (1.1) if the Fritz-John condition holds: There exist
multipliers 0 # A = (A, A1, -+ s Amar) € R™TH1 such that

V. L(x,A) =0, h(z)=0; \; >0, gi(z) <0, fori=1,2,...,m; Z;\lgl(x) =0.

i=1
(1.2)
Here L is the Lagrangian function
(1.3) L@, A) =Mof(x) + > Xigi(z) + D Ay b (2).
i=1 j=1

A local solution z* of (1.1) is a stationary point [34]. We introduce the sets of
generalized Lagrange multipliers

(1.4) A9(z) = {o £ X e R™HL| X satisfies (1.2) at « } :

(1.5) N (z) = xeAg(x)Mo:l}.
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The set of active inequality constraints at a stationary point x is
(1.6) A(x)={ie{1,2,...,m}]| gi(z) = 0}.
The set of inactive inequality constraints at z is the complement of ~A(ac)

(1.7) A(z) ={1,2,....,m}— A(z).

With this notation, the complementarity condition from (1.2), Y Aigi(z) = 0,
becomes S\AC(z) =0.

If certain regularity conditions hold at a stationary point z (discussed below),
there exist i = (fi1, fi2,-- -, fmir) € R™T" that satisfy the Karush-Kuhn-Tucker
(KKT) conditions [3, 4, 14]:

(1.8) vzf(x) + 2111 ﬁszgz(m) + Z;:l ﬁerjvziLj(x) =0, iL(l‘) =0;
lai >0, gl(‘r) <0, ﬁlgl(x) =0, for i = L2,...,m.

In this case, i are referred to as the Lagrange multipliers, and x is called a Karush-
Kuhn-Tucker (KKT) point. We denote the set of Lagrange multipliers by

(1.9) Ax) = {p € R™"| [ satisfies (1.8) at z }.
A simple inspection of the definitions of A(z) and Af(z) reveals that:
iie Az) & (1,71) € Ad(w).

Also, because of the first-order homogeneity of the conditions (1.2), and from (1.8),
it immediately follows that

(1.10) A(z) #0 < A(z) # 0 < 3N € AY(x), such that Ao # 0.

The regularity condition, or constraint qualification, ensures that a linear approx-
imation of the feasible set in the neighborhood of a stationary point = captures the
geometry of the feasible set. The regularity condition that we will use at times at
a stationary point z is the Mangasarian-Fromovitz constraint qualification (MFCQ)
[30, 29]:

1. inzj(a:), J=1,2,...,7, are linearly independent and
(MFCQ) 2. 3p #0 such that V,h;(z)Tp=0, j=1,2,...,r

and V,3;(x)Tp <0, i€ A(x).

It is well known [21] that (MFCQ) is equivalent to the fact that the set A(x) of
Lagrange multipliers of (1.1) is not empty and bounded at a stationary point z of
(1.1). Note that A(z) is certainly polyhedral in any case.

Another condition that we will use on occasion is the strict Mangasarian-
Fromovitz constraint qualification (SMFCQ). We say that this condition is satisfied
by (1.1) at a KKT point z if

1) (MFCQ) is satisfied at = and

2) the Lagrange multiplier set A(z) contains exactly one element.

(SMFCQ)
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The critical cone at a stationary point x is [13, 38]

(L.11) C(z) = {uER” | Vohi(@)Tu=0,5=1,2,...,7
' V.ii(2)Tu <0, i € Alz); Vof(z)Tu < 0} .

We now review the conditions for a point z* to be a solution of (1.1). The
second-order necessary conditions for z* to be a local minimum are that A9(z*) # 0
and [24]

(1.12) Yu € C(z*), 3N € AI(x*), such that u” V2, L(z*, A*)u > 0.

The second-order sufficient conditions for x* to be a local minimum are that
A9 (z*) # () and [24]
(1.13) YueC(z*), u#0, 3N € AI(z*), such that u” V2 L(z*, \*)u > 0.

Stronger second-order conditions are Robinson’s conditions. These conditions are
that, at a solution x*, the following condition holds:

Yu € C(z*), u#0, YA* € A(z*), we have that u?'VZ_L(z*, \*)u > 0.

In a fact we will invoke Robinson’s conditions for the case where Af(z*) # 0. In the
latter situation, Robinson’s conditions are equivalent to:

(RSOSC) Vu € C(z*), u#0, YA* € Ad(x*), we have that u?' V2 _L(z*, A\*)u > 0.

1.2. Notation. For a mapping ¢ : R" — R!, we define:

maX{QI($)78} max{—ql(x),g}
= | RGO | | o)
max{q(x),0} max{—q;(z),0}

With this definition, it immediately follows that ¢(x) = ¢'(z) — ¢~ (z) and that

lgi(z)| = ¢ (z) + q; (z),i=1,2,...,1
We denote the L., nondifferentiable penalty function by

(1.14) Poc(w) = max {31 (2), G2(@), -, G (1),

We also define the L; penalty function as
T

(1.15) Pi(x) :Zgj(xHZ]ﬁj(x)‘.

j=1
It is immediate that:
0 < Py(z) < Pi(x) < (m+7) P ().

An obvious consequence of (1.15) and (1.14) is that = is a feasible point of (1.1) if

and only if Py (z) = Ps(z) = 0.
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We say that the nonlinear program (1.1) satisfies the quadratic growth condition
with a parameter ¢ at z* if

(L16) max { () = F(*), Pol) } 2 5 |l — 2

holds for some & > 0 and all  in a neighborhood of z*. The quadratic growth
condition is equivalent to the second-order sufficient conditions (1.13), [6, 7, 24, 25, 38]
and it is the weakest possible second-order condition.

For the case in which (MFCQ) holds at a solution z* of (1.1), the quadratic
growth condition at z* is equivalent to [6]

(1.17) f@) = f@) =57 llx —a*|?

for some g7 >0 and all z feasible in a neighborhood of z*.

We will also use the Landau notation. We say that a is of order b which we denote
by a = O(b), if there exists ¢ such that a < ¢b for all a and b sufficiently small. We
denote by a = Q(b) quantities a and b that satisfy a = O(b) and b = O(a).

We will use certain symbols twice, to denote related data of different programs.
However, to avoid confusion, we will use a ~ sign for the data of the general non-
linear programming problem (1.1), whereas the same objects associated with the
(MPCC) problem (to be defined later) are denoted it without the sign. For instance,
f, g, h, denote, respectively, the objective, the inequality constraint, and the equality
constraints of the general nonlinear programming problem, whereas f, g, h denote, re-
spectively, the objective, the inequality constraints, and the equality constraints of the
MPCC problem. The MPCC problem, however, has, in addition, complementarity
constraints.

In the literature problems of the type we treat here are also called mathematical
programs with equilibrium constraints (MPEC), an acronym that we may use when
we invoke optimality conditions from the respective references.

1.3. Exact Penalty Conditions for Degenerate Nonlinear Program-
ming. We now assume that at a solution z* of the nonlinear program (1.1) the
following conditions hold:

1. The Lagrange multiplier set at z*, A(z*), is not empty.

2. The quadratic growth condition (1.16) is satisfied.
Then there exists a neighborhood V(z*), some penalty parameters ¢, > 0, éo, > 0
and some growth parameters o1 > 0 and 04 > 0 such that [7, Theorem 3.113]

Vo € V(@) 1 (z) = f(z) + & Pi(x) 2 f(2*) + o [Jo — 2"
(1.18) = 1 (2*) + o1 [Jw — 2",
Va € V(a"), oo (x) = (&) + oo Poo () > f(2*) + 0cc [l — 2|

(1.19) = oo (2¥) + oo ||z — 2*])?.

Therefore, z* becomes an unconstrained strict local minimum for the nondifferentiable
functions 1 () and (). Such functions are called nondifferentiable exact merit
functions for the nonlinear program (1.1) [3, 4, 14]. If (1.18) and (1.19) are satisfied
then we say that the functions 11 (z) and ¥ () satisfy a quadratic growth condition
near x*.
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1.4. Formulation of Mathematical Programs with Complementarity
Constraints. We use notation similar to the one in [36] to define a mathematical
program with complementarity constraints (MPCC).

(MPCC) min,, f(z)
subject to gi(x) <0, i=1,2,...,n4
hj(x) =0, j=1,2,...,n
Fia(x) <0, k=1,2,...,n¢
Fyo(z) <0, k=1,2,...,n
Fk,1($)Fk72(x) <0, k=12,...,n.

In this work we assume that the data of (MPCC) (f(z),h(z),g(x) and Fj ;(z), for
k=1,2,...,n. and i = 1,2) are twice continuously differentiable.

For a given k, the constraints F 1(x) < 0, Fj 2(z) < 0 imply that Fj 1(x)Fg2(z)
< 0 is equivalent to Fy i(x)Fi2(x) = 0. The constraints Fj 1(x)Fy2(x) < 0 are
therefore called complementarity constraints and are active at any feasible point of
(MPCC).

Since we cannot have Fj1(z) < 0, Fy2(x) < 0, and Fy 1(x)Fi2(z) < 0 simulta-
neously, it follows that (MFCQ) cannot hold at any feasible point z [27, 36].

1.5. MPCC Notation. In this section, which previews our general convergence
results, we use the same notation from [36] to denote certain index sets, because
at some point we invoke a theorem from that reference. Later, in our super linear
convergence results we will use notation from [16] to denote similar index sets, because
we will use results from the latter reference.

If i is one of 1,2 we define i = 2 — i + 1. Therefore i =1 =i =2, and i = 2 =
i = 1. The complementarlty constraints can thus be written as Fy ;(z)F) 3(x) < 0,
k=1,2 . We use the notation

(120) F(l‘) = (F11($)7F12(!E)7 F21($>7 F22(x)7 R Fncl(x)7 Fnc2(x))T :

The active set of the inequality constraints g;(x) <0, 1 < i < m, at a feasible point
T is

(1.21) Alx)={ie {1,2,...,n;} | gi(z) = 0}.

We use the following notation:

1.22) I(z) = {( ) €412, nc} x {1,2}| Fya() < 0},

( ,Z) S {1,2, . ,’I’LC} X {1,2} | Fkﬂ‘(ﬂf) < O},
(k,i) € {1,2,....nc} x {1,2}| Fi(w) = Fy 5(z) = o},
1,2,...,ne} x {1,2} = Z(x),
k:e{l,2,.. )| (k1) €Z(x) or (k,2) € Z(z)},
={ke{l,2,....,n.}| Fx1(z) = Fra(x) =0} ={1,2,...,n.} — K(x).

There are two cases for the constraints involved in the complementarity con-
straints at a feasible point x.
L. Fy1(z)+Fg2(z) <0.In this case there is an i(k) € {1, 2} such that Fj, ;) =0

and Fj 7,y < 0. Therefore, with our notation k € K(z), (k,i(k)) € Z(x)
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and (k,i(k)) € Z(x). We call Fy1(z), Fr2(7) a nondegenerate (or strictly

complementary) pair. In the rest of the paper i(k) and i(k) will have the

meaning defined in this paragraph, whenever k € KC.

2. Fri1(z) + Fra(x) = 0, or F1(z) = Fra(z) = 0. In this case k € K(z),

(k,1) € D(z) and (k,2) € D(z). We call Fy, 1(z), Fy 2(z) a degenerate pair.
Therefore Z(x) and Z(z) contain the indices of the active constraints at which strict
complementarity occurs, whereas D(z) contains the indices of the constraints that are
degenerate at x from the point of view of complementarity. The set K(x) represents
the indices k at which strict complementarity occurs and K(z) the indices k at which
complementarity degeneracy occurs.

Since we are interested in the behavior of (MPCC) at a solution point z*, we
may avoid the dependence of these index sets on x. Therefore we denote Z = Z(z*),
D =D(x*), K= K(z*), and A = A(x*).

For a set of pairs J C {1,2,...,n.} x {1,2} we denote by F7 a map whose
components are Fy, ; with (k,7) € J.

1.6. Associated Nonlinear Programs at x*. In this section we associate two
nonlinear programs to (MPCC). This will help with characterizing the stationarity
conditions for (MPCC). The notation is from [36].

At z* we associate the relaxed nonlinear program (RNLP) to (MPCC).

(RNLP) min,  f(x)
subject to  gi(x) <0, i=1,2,...,n
hj(z) =0, j=1,2,...,n
Fg(z) <0,

As it can be seen, (RNLP) is obtained from (MPCC) by dropping the elements from
F(z) that are inactive at 2*, as well as the complementarity constraints, but enforcing
the complements of inactive constraints as equality constraints.

We also associate at z* the tightened nonlinear program (TNLP), in which all
the complementarity constraints in (MPCC) are dropped and all active constraints
at z* connected to complementarity constraints are replaced by equality constraints.

(TNLP) min,  f(x)
subject to  gi(z) <0, i=1,2,...,n;
hi(z) =0, j=1,2,...,n¢
Fg(z) =0,

We immediately see that, near x*, (TNLP) is a more constrained problem than
(MPCC), which in turn is more constrained than (RNLP), and all three programs
have the same objective function. As a result, if z* is a local solution of (RNLP),
then it must be a local solution of (MPCC). Also, if z* is a local solution of (MPCC),
then it will be a local solution of (TNLP). None of the reverse implications hold in
general for either local solutions or stationary points.

However, if (TNLP) satisfies (SMFCQ) at a solution z* of (MPCC), then z* is a
Karush-Kuhn-Tucker point of (TNLP) and (RNLP) [36].

2. The Lagrange Multiplier Set of (MPCC). In this section we analyze the
relationship between the relevant mathematical objects of (MPCC) and (RNLP) at a
solution z*. The (RNLP) formulation does not immediately violate (MFCQ), the way
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(MPCC) does. By establishing a correspondence between the Lagrange multiplier
sets of (RNLP) and (MPCC) we ensure that, under certain conditions, (MPCCQC)
has a nonempty Lagrange multiplier set, although it does not satisfy a constraint
qualification.

2.1. Critical Cones. In this section we compare the critical cones of (MPCCQC)
and (RNLP). The active sets play a structural part in the definition of the critical
cones. We have that:

Vo (Fr1Fr2) (%) = Fi1(2")VaFro(x™) + Fio(x®) Ve Fia(x¥).

We distinguish two cases.
1. If k € K, we have that Fy 1(z*) = Fy2(z*) = 0, and, as a result,

(2.1) keK =V, (F,F2) (z%) =0.

Therefore, if k € IC, the constraint Fy1(x)Fy2(z) <0, which is active at z*,
has no bearing on the definition (1.11) of the critical cone (it would just add
the constraint 0 < 0).

2. If k € K, then there exist an i(k) such that (k,i(k)) € Z and (k,i(k)) € T.
The constraints Fj, ;) (z) < 0 and Fk’i(k)(x)ij(k)(x) < 0 are active at z*,
whereas ij(k)(;v*) < 0 and the corresponding constraint is inactive at z*.
Therefore we have that

(2.2) Va (Fk,i(k)Fk,E(k)) (@) = Fy 50 (@) Va Fl i) (27),

and thus the constraints connected to & that enter the definition of the critical
cone (1.11) are:

Vo F ity (@) <0, Fy500(@) (Ve Frig (7)) u <0

for u an element of the critical cone.
Using the definition (1.11) we get that the critical cone of (MPCC) is

Cmpcc ={ue R | Vuf(z")u < 0
Vagi(x*)u < 0, ieA
Vahj(x*)u = 0, j€1,2,...,n,
(2.3) VaoFp1(z*)u < 0, kek
VoFg2(x*)u < 0, kek
Ve Frigiy (2 )u < 0, (kik)eT
Fion @) Ve iy (@ )u <0, (k,i(k)) € Z}.

Note that the definition that we use here of the critical cone corresponds to the non-
linear programming interpretation of (MPCC). There exists another, combinatorial,
definition of the critical cone, that is used in connection to disjunctive approaches [27,
Equation 5.3.(2)].

We use (1.11) again to determine the critical cone of the relaxed nonlinear pro-
gram. It is immediate from the definition of the index sets Z,K, and D that all
constraints involving components of F'(z) are active at * for (RNLP). It thus follows
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that the critical cone of (RNLP) is

CrnLp ={u € R" | Vaf(z")u < 0,
Vgi(x*)u < 0, 1€A
(2.4) Vahi(z*)u = 0, jel2...,n
’ Vi Fpa(z*)u < 0, kek
VoFk2(x*)u < 0, keK
VoFiim(@)u = 0, (ki(k))eT}.

LEMMA 2.1. CMPCC = CRNLP'

Proof The conclusion is immediate, by noting that all the constraints involving
the critical cones are the same with the exception of the ones involving indices k for
which (k,i(k)) € Z. For these k, from the definition (1.22) of the index sets it follows
that F 7, (z") < 0. We therefore have that:

VaFiiy(@*)u < 0 and  Fy ;0 (@")VeFi (@ )u < 04
ViFiigy(@*)u < 0 and ViFp iy (@ )u > 0
V Fk,i(k‘) 1'*) = 0

Since the remaining constraints of (RNLP) and (MPCC) are the same this equivalence
proves the claim. o

2.2. Generalized Lagrange Multipliers. The set of generalized Lagrange
multipliers of (MPCC) at z* is a set of multiples

0# (a,v,m p,m) € R x R™ x R™ x R*e x R™

that satisfies the Fritz-John conditions (1.2). Since p are the multipliers corresponding
to the components of F(x), we will index them by elements in (1,2,...,n.) x (1,2).
The Fritz-John conditions for (MPCC) at z* are that z* is feasible for (MPCC) and
that

(2.5) oV, f(z +ZV1 e +va i
> [kaVeFea(z®) + pr2VaFro(a) + Ve (Fy 1 Fro) (z7)] =0
k=1
Fp;(z*) <0, pg; >0, piiFei(z*) =0, k=1,2,...,n
1=1,2
(2.6) gi(z*) <0, v >0, vigi(z*) =0, i=1,2,...,
Frp1(2*)Fro(z*) <0, me >0, mpFpa(a*)Fro(x*) =0, k=1,2,...,nc.

From our definition of the index sets it follows that F=(x*) < 0 and g4-(z*) <
Therefore, from the complementarity conditions (2.6), it follows that uz = 0 a d
Vpc = 0.

We can also determine the relations satisfied by the generalized Lagrange multi-
pliers of (RNLP). As discussed above, the index sets that define (RNLP) have been
chosen such that all constraints involving components of F(x) are active. Therefore
the generalized Lagrange multipliers are:



Elastic Mode Approach for Mathematical Programs with Complementarity Constraints 11

that satisfy the Fritz-John conditions:

(2.7) AV f(@*) + ) i Vagi(a®) + Y 7 Vahy(a®) +
i=1 j=1

> ik VaFrea (@) + ik 2VaFra(@®)] + > kit Ve P (@) =0
kex kex

gi(z*) <0, U; >0, 0;,9;(x*)=0, i=1,2...,n

(28) Iakt,l > 07 /17@2 > 07 ke K.

Here [i is a vector that is indexed by elements of D, and 7 is indexed by elements of
T.

2.3. Relations between the generalized Lagrange Multiplier Sets of

the generalized multiplier A of (RNLP) a generalized multiplier \° of (MPCC). We
define the following types of components of A°.

1. Components that correspond to the objective function or the inequality con-
straints g;(z) < 0 and equality constraints h;(z) =0

(2.9) a°=a; V=0, 7°=T.

2. Components connected to the pairwise degenerate constraints. For these we
have k € K and (k,1), (k,2) € D or Fj,1(z*) = F2(z*) = 0. We define

(2.10) 1, = s, (ki) €D; 72 =0, ke K.
Similar to the equation (2.1) we have that:

Vo (Fj1Fr2) (%) =0,
and therefore

Pk Ve Fi 1 (2%) + i 2V Fi2(2%) = pg Ve i1 (2%)  +

2.11
(2.11) 1 3V o Fi o () + 10V (Fion Fi2) (7).

3. Components connected to pairwise strictly complementary constraints. In this
case we have k € K, (k,i(k)) € Z, and (k,i(k)) € Z. Therefore F) 7,,(z") < 0,
Fyi(ry(2*) = 0, and we thus define the multipliers

13y = max {7k i), 0}, (kyi(k)) €
(212) /J’z’g(k()) = 07 ) ' i (k’ Z(k)) cT
e = Fpig@n M {eir), 0}, kek.

It is immediate from these definitions that ik) > 0 and 7y > 0. Since, for fixed k,

TTk,i(k) 15 the only multiplier of (RNLP) involved in definition (2.12), we obtain using
(2.2) that

Tk,i(k) Va Fr i) (@) = [max {7k i), 0} + min {7y i), 0}] VaFlig) ()

(2.13) = g (k) Vi) (%) + 0 500 (@) Va Fragn (27) - =
K5 010 Ve Pl (@) + 12 20 Vo P @) + 12V (B s iy ) (@)
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After we compare the terms that, following (2.11) and (2.13), are equal in (2.7)
and (2.5), we get that \° = (a°,v°,7° u°,n°) satisfies (2.5) as well as (2.6). By

tracing the definition of A\° we also have that A # 0 = A° # 0. Therefore \° is a
generalized Lagrange multiplier of (MPCC) or

o __ o _ o _0o , O .0 g
(214) A _(aayvﬂ-7ﬂ'7n)eAMPCC7

where a® = & from (2.9).

THEOREM 2.2. If the set of Lagrange multipliers of (RNLP) is not empty, then

the set of Lagrange multipliers of (MPCC) is not empty.
_ Proof Since the Lagrange multiplier set of (RNLP) is not empty, we can choose
A= (1L, 0,7, ,7) € Afy rRyLp- From (2.14) it follows that A\° = (1,v°,7°,u° n°) €
A?,MPCC is a generalized multiplier of (MPCC). From (1.10) it follows that the La-
grange multiplier set of (MPCC) is not empty. o
COROLLARY 2.3. Assume that (TNLP) satisfies (SMFCQ) at a solution x* of
(MPCC), i.e.
1. Vo F5(x*), Vo Fr(x*), and V h(z*) are linearly independent.
2. There exists p # 0 such that V, F5(x*)p = 0, Vo, Fz(z*)p = 0, V h(z*)p = 0,
Vgi(z*)p < 0, forie A(x*).
3. The Lagrange multiplier set of (TNLP) at x* has a unique element.
Then the Lagrange multiplier set of (MPCC) is not empty.

Proof From [36, Theorem 2], since (TNLP) satisfies (SMFCQ) at x*, the La-
grange multiplier set of (RNLP) is not empty. Following Theorem 2.2, we obtain that
the Lagrange multiplier set of (MPCC) is not empty, which proves the claim. o

Unfortunately, the reverse statement of Theorem 2.2 does not hold in the absence
of (SMFCQ), as is shown in [36]. Indeed, consider the following example:

ming, y-—
Y
(2.15) y+x

y(y + )

INININIA
cocoo

The unique minimum of this problem is (0, 0). However, if we construct the associated
(RNLP) formulation, we obtain

ming, y-—x

Y < 0
(2.16) y+x < 0
T < 0.

The point (y, 0) is feasible for y < 0 for the now-linear program (2.16). Thus (2.16) is
unbounded and cannot have (0,0) as a stationary point. Therefore Theorem 2.2 can-
not be applied, since the Lagrange multiplier set of (2.16) is empty. In this situation
(TNLP) associated to (2.15) of (2.15) does not satisfy either (MFCQ) or (SMFCQ).

2.4. An alternative formulation. We also investigate the following equivalent
formulation of (MPCC), where the complementarity constraints have been replaced
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by one constraint:

min, flx)
subject to gi(x) <0, i=1,2,...,n,
h](x) =0, j=1,2 y e
(217) Fra (2) <0, k=12....n
Fyo(x) <0, k=1,2,...,n

At a feasible point of the above program, we must have that Y ¢ | Fi 1(z)Fj2(x) =0
and the equivalence between (2.17) and (MPCC) follows immediately. This formula-
tion is of interest in computations because it has less constraints than (MPCC).

LEMMA 2.4. If the Lagrange multiplier set of (MPCC) is not empty, there exists
a generalized Lagrange multiplier (1,v,m,u,n) € Alg\/IPCC such that n, = m, k =
2,3,...,n.. Proof Let \° = (1,v°,7° u° n°) € AK/IPCC be a generalized Lagrange
multiplier of (MPCC). Now let d € R™ such that d > 0.

If k corresponds to degenerate complementarity constraints, k € K, we have, as
argued above, that F 1(z*) = Fj2(2*) = 0, and thus

dkvx (Fk71Fk72) (JL‘*) =0.
For this case, define
M =M% +diy  Hpa = Hi1r M2 = Beos
which results in

o1 Vel (2*) + 15 o VaFi2 () + 0p Ve (B Fr2) (%)

2.18 ! oy 2 o Y N
(2:18) 11 VaFia(x*) + pg o VaFi 2 (2) +0p Ve (B Fr2) (7).

If k& corresponds to strict complementarity constraints, k& € K, we have that
Fio iy (x*) =0, Fk,;(k) (z*) < 0 and thus Hye iy = 0- Define

Mo =M + ks Bitr) = Hiitry — WeF i (87) 205 1200 = By 5y = 0
Since Fj, j(k)(z*) = 0 we have that
Va (FraFr2) (@) = Fy 50 (@) Va Fi i) (7).
In turn, the last equation implies that
Mlt,i(k)Vkayi(k) (z") + M;{(k)vka,{(k)(w*) + M Va (Fi1Fi2) (27) =
(Nz,i(k) - dkag(x*)) Ve Feite) (27) + 1 700 Va3 (
)

(M +di) Vo (Fi,1Fk2) (27) =ty 00 Ve Fr,i) (
“Z,z(k)vka,E(k)(z*) + Ve (Fr1Fr2) (7).

)+
)+

Since A\° satisfies (2.5) and (2.6), it follows from the preceding equation and (2.18), in
a manner similar to the proof of the Theorem 2.2, that \* = (1,v°, 7°, u*, n*) satisfies
(2.5) and (2.6) and thus A* € AK/IPCC for any 0 < d € R™ where n* = n° +d. The
conclusion is immediate, since we can always choose a vector d > 0 such that 0} = n7,
k=1,2,...,n. One such choice, for example, is d = ||n°]| (1,1,...,1)T —n°. o
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We now describe the generalized Lagrange multiplier set of the alternative formu-
lation (2.17). We denote mathematical objects connected to (2.17) by the subscript
mpcci- We write the Fritz-John conditions (1.2) for (2.17) at the point z*, and we
obtain

(2.19) a°Vof(x +Zuvxgz +Zth

ne 2 Ne
Z Zui,inFk,i(w*) + 77<1> va (Fk,le,z) () =0

k=11=1 k=1

Fii(x*) <0, pp,; >0, pg Fri(@*)=0, k=12,...,n,
(2.20) i=1,2
gi(z*) <0, v$ >0, vigi(x*) =0, i=1,2,...,n;

K2

and 7° > 0 € R. A generalized multiplier of (2.17) is thus
A = <a°,1/<>771'0,’u°’77f> c A?\/IPCCd CR X RY x R x R2% x R,

where A® satisfies the Fritz-John conditions (2.19), (2.20).

THEOREM 2.5.

i) The formulation (2.17) has a not empty Lagrange multiplier set if and only
if (MPCC) has a not empty Lagrange multiplier set.

ii) If (MPCC) has a not empty Lagrange multipliers set and it satisfies the

quadratic growth condition at x*, then (2.17) has a not empty Lagrange mul-
tipliers set and satisfies the quadratic growth condition at x*.

Proof If the Lagrange multiplier set of (2.17) is not empty, then there exists
A= (1,v°, 7, 1%, n5) € R x R™ x R™ x R?" x R that satisfies (2.19-2.20). Define
= m%ns,...,n9)T € R™ and \* = (1,v°,7°, u°,n*). It follows by inspection
that A* satisfies (2.5), (2.6) at z*. Therefore A* is a generalized Lagrange multiplier
of (MPCC), which means that (v°,n°, u®,n*) is a Lagrange multiplier of (MPCC).
Thus the Lagrange multiplier set of (MPCC) is not empty. Conversely, applying
Lemma 2.4, if the Lagrange multiplier set of (MPCC) is not empty, there exists the
generalized Lagrange multiplier A = (1, v, 7, u,n) of (MPCC) that satisfies nx = ny,
for k = 1,2,...,n.. It immediately follows that, since A satisfies (2.5) and (2.6),
(1, v, 7, u,m ) satisfies (2.19) and (2.20) and is thus a generalized Lagrange multiplier
of (2.17). Therefore (v, m, p, 1) is a Lagrange multiplier of (2.17) at 2*. The proof of
part i) is complete.

For the second part, if (MPCC) has a not empty Lagrange multiplier set, then,
from part i), the formulation (2.17) has a not empty Lagrange multiplier set. Since
(MPCC) satisfies the quadratic growth condition, we have that [7, Theorem 3.113]
there exists ¢; > 0 and o7 such that, for any = in a neighborhood of x*, we have that:

flz) + Cl||g+(95)||1+cl||h(35)||1'|'clHF+ H1+01HF+ H1
+ aXp (Fu(e)Fe@)” > f@*) + o |lo — ¥

Here we denote by Fy(z) = (Fi1(z), Fo1(2),. .., Fy1(z)) and by Fa(z) = (Fi2(x),
Fao(x),..., Fpo(x)). We now analyze in detail one term of the rightmost sum. We
have that:

Fra (2) Fra() = Fi}y (2) i (2) + Fiy (2) Fip () = Fify (2) Fip(2) = Fiy (@) Fi ().

(2.21)
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Since only one term in the preceding sum can be a nonzero, we obtain that:

(Fii(2) Fra(2)) " = B (2) Fh (@) + Fi (2) Fp (),
(Fia(2) Fra(2)) ™ = Fyfy (2) Fip () + Fiy (2) iy ().

This implies that there exists a cpp > 0 such that, for any z in a neighborhood of z*,
and for any k =1,2,...,n., we will have that:

(Fii(2)Fra(2))” < crr (B (2) + Fh () -

In turn, this implies that for any x in a neighborhood of x*, we will have that:

(Chey Fra (@) Fra(z)) " = (ZZ;:L (Fra(z) Fra (@)™ = S0, (Fkl(ﬂﬁ)l“ﬂkz(f))_)+

> 3 (Fra(@)Fra(@) ™ = S0ey (Fra(z) Fra(@)) ™
> sy (Fra(z) Fra( ’))+

Ey @)[,)-
(2.22)
Using the last inequality we obtain that:

f@) + (e +ecrr)||lg™(@)|], + (e1 +ercpr) |[h(@)||, + (e + crcrr) || (2)|],
+
+ (c1+cicpp) ||FS (2)]], + (e1 + crcrr) (ZFkl ) Fra( > >

f@) + (ea+ecrr)|lgt @), + (e + ercrp) [[M@)]]y + (e + crerp) [|FY ()]

(2.22)

+ (a1 4 cicrp) ||Fy (@ H1+CI<ZFM ) Fr2(z )

f@) + (er+eerr) |lg @], + (1 + ererr) M@y + e || (@)]]

+

AECIRES SEACERE

(2.21)

> f@) +on[le— "]

From the last inequality it follows that (2.17) satisfies the quadratic growth condi-
tion (1.16) with parameter min {%, ) Gy Ty ey } The proof of part ii) is
complete. o

Theorems 2.2 and 2.5 give sufficient conditions for (MPCC) and (2.17) to have a
nonempty Lagrange multiplier set in spite of the fact that neither satisfy a constraint
qualification at any point in the usual sense of nonlinear programming. In Section
3 these conditions will imply that a relaxed version of either (MPCC) or (2.17) will
have the same solution as (MPCC) and will satisfy (MFCQ), which makes either
approachable by SQP algorithms.

3. The Elastic Mode. An important class of techniques for solving nonlinear
programs (1.1) is sequential quadratic programming. The main step in an algorithm
of this type is solving the quadratic program

Vo f(@)Td+ dTWd,
_gl( )+ :Dgl( )ngoﬂ 7;:1,27"’am
hJ()+ ()Td:O’ j:172a"'7r

ming
(3.1) subject to
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The matrix W can be the Hessian of the Lagrangian (1.1) at (x,A) [15], where A is
a suitable approximation of a Lagrange multiplier or a positive definite matrix that
approximates the Hessian of the Lagrangian on a certain subspace [14, 22, 31]. A
trust-region type constraint may be added to (3.1) to enforce good global conver-
gence properties [15]. The solution d of (3.1) is then used in conjunction with a merit
function and/or line search to determine a new iterate. We give here only a brief
description of SQP algorithms, since our interest is solely in showing how the diffi-
culties regarding the potential infeasibility of (3.1) when applied to (MPCC) can be
circumvented. For more details about SQP methods see [14, 15, 22, 31].

If a nonlinear program satisfies (MFCQ) at z* then the quadratic program will
be feasible in a neighborhood of z*. If (MFCQ) does not hold at z*, however, the
possibility exists that (3.1) is infeasible, no matter how close to x* [27, 33, 36]. This
is an issue in the context of this paper because (MPCC) does not satisfy the (MFCQ)
at a solution z*.

In the case of infeasible subproblems some of the SQP algorithms initiate the
elastic mode [22]. This consists of modifying the nonlinear program (1.1) by relaxing
the constraints and adding a penalty term to the objective function.

When the elastic mode is implemented, only the nonlinear constraints are relaxed
[22]. To represent this situation in our approach, we assume that g;(x) for i =
1,2,...,0;, and h;(z), for j =1,2,...,l., are linear.

For these constraints, we assume that

[B1] The set F; is feasible, where

ﬂ={m

gl(x) SO? i:1527"'7li7 ilj($):0,j:1,27...,le}7

[B2] The preceding representation of F; is minimal: Vmﬁj (z) are linearly indepen-
dent, j =1,2,...,l., and 3d such that V,h;(z)d =0, V,g;(z)d < 0.

None of these assumptions induces any loss of generality. Indeed, if F; = 0,
then the original nonlinear program (1.1) is infeasible. Most software for nonlinear
programming starts with an analysis of the linear constraints and the infeasibility of
the problem, which is the correct outcome when F; = (), is immediately detected.
Clearly, the interesting situation is when F; is feasible, which is our assumption [B1].

If the set F; is polyhedral and nonempty, it must have a minimal representation
[39, 11]. In addition, this representation can be computed by solving only one lin-
ear program [18]. The methods we use in this work are of the sequential quadratic
programming type, where all constraints of the nonlinear program are linearized, and
the nonlinear constraints are perhaps relaxed. Since the set JF; is invariant under
linearization, any of its representations will produce the same quadratic program sub-
problems. As long as we do not involve the Lagrange Multipliers of the constraints
defining F;, that are not invariant to a change in representation, assumption [B2]
does not result in any loss of generality as long as assumption [B1] holds.

Depending on the type of the relaxation, we can have either an Ly or an Lo,
approach. Our results are related to the situation in which the merit functions v, ()
and 1 (x) are exact for the nonlinear program (1.1). Since both merit functions are
widely used we will state our results for both cases.

First we consider the case in which the added penalty term is of the L, [3] type:
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Define ¢o >0, 2%, k=0, 0 € (0,1), 7 € (0,1), s > 0.
QP  Find the solution d = d* of the quadratic program.
minimizey éde + sz(ask)Td
subject to  h(z*) + V. h(z¥)Td = 0
9(a*) + Vag(z*)Td < 0
Find the smallest integer m = m* that satisfies
VYoo (zF + 7™ 8d¥) — oo (2F) > ormsd" dk.
Define zFt1 = 2% 4 7™k sd* and k = k + 1.

Go to QP.
TABLE 3.1
The model algorithm
min, ¢ f(z) + ool

subject to gi(z) < 0,i=1,2,...,1;
gz(x) S <7i:li+]~7"'am7

3.2) hi) = 0,j=1,2,...1
7C§h]($) < Caj:le+1>~~'7r

¢ = 0.

An alternative elastic mode strategy consists of using an L; approach [14, 22].
The modified nonlinear program becomes

ming o v,w f(l‘) + (ef%liu + EZLIC (U + u)))

subject to Gilr) < 0,i=1,2,... 1L,
gi(x) < w, i=0L+1,...,m,
3.3 £
(3.3) hi(z) = 0,j=12,...,l
—vj <hi(x) < wy,j=l+1,...,r
u,v,w > 0,

where e,,—;, and e,_;, are vectors whose entries are all ones, of dimension m —[; and
r — I, respectively. We call ¢, and ¢; the penalty parameters.

All the constraints are now inequality constraints. A quadratic program analogous
to (3.1) is constructed for (3.2) or (3.3), which, since [B1] and [B2] hold, now satisfies
(MFCQ) at any feasible point. A feasible point of (3.2) or (3.3), respectively, can be
immediately obtained by choosing ¢ and u, v, w, respectively, to be sufficiently large.

We will make specific claims about one algorithm, presented in Table 3.1. The
algorithm is not necessarily practical, but it serves to show that rates of convergence
results can be obtained under very general assumptions. We now define the algorithm
for the general nonlinear program (1.1), though we later applied it to (3.2) and (3.3).

For fixed penalty parameter c;, the problem (3.3) can be approached by the above
SQP algorithms without resulting in an infeasible QP, since the linearization of the
problem (3.3) is always feasible if [B1] and [B2] hold. If for a solution of (3.3) we
have that u, v, w are all equal to zero then the x component of the solution of (3.3) is
also a solution of the original, unrelaxed nonlinear program (1.1).

The possibility exists, however, that ¢; may have to be increased indefinitely
before a solution of (1.1) is obtained. In the following theorem we discuss sufficient
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conditions that ensure that the elastic mode relaxations (3.2) and (3.3) have z* as a
component of the solution for sufficiently large but finite penalty parameter.
THEOREM 3.1. Assume that, at a solution =* of (1.1), we have that

e the Lagrange multiplier set of (1.1) is not empty,

e the quadratic growth condition (1.16) is satisfied at =*, and

e the data of (1.1) are twice continuously differentiable.

Then,

1. For sufficiently large but finite values of the penalty parameter co, and, respec-
tively, c¢1, we have that the points (x*,0) and, respectively, (*,0m—1,,00—1,,
0r—1,), are local minima of (3.2) and (3.3) at which both (MFCQ) and the
quadratic growth condition (1.16) are satisfied.

2. For the same values co, and, respectively, ¢; we have that the points (z*,0)
and (x*,0m—1;,0n—1.,0n—1,) are isolated stationary points of (3.2) and (5.5).

3. For the same values coo and, respectively, ci, if the algorithm in Table 3.1 is
applied to (3.2) and, respectively, (3.3), and is initialized sufficiently close
to (x*,0) and, respectively, (z*,0m—1,,0r—1.,0._1, ), with sufficiently large
penalty parameter ¢, then the sequence x* of iterates converges R-linearly.

Proof We will prove part 1 of the Theorem only for the L., case, the L; case
following in the same manner. We define the fully relaxed nonlinear program

min, ¢ f(x) + ool

(3.4) subject to gi(z) < ¢ i=12,...,m,
’ _Cghj(x) < Cvj:1,27~~-,7'
¢ = 0.

If (z,() is a feasible point of (3.4), it immediately follows from the definition
(1.14) of the L., penalty function, Ps,(z), that ¢ > Py (x). From (1.19), under the
assumptions stated in this Theorem, we have that there exists ¢, > 0 such that the
penalty function 1., () satisfies a quadratic growth condition at z*. Choose now

Coo = Coo + 1.

Using (1.19), we obtain that, in a sufficiently small neighborhood of z*, we must have
that:

f(@) + 00l = f(2) + oo Poo () = o1 [J& — 27|

Whenever ¢ < U%, we will have that 0,¢% < (. Therefore, in a sufficiently small
neighborhood of (z*,0), for all (z, () feasible, we will have that:

F(@) + e = J@) + e+ ¢ 2 o1 (Jlo =P +¢2).

Therefore, for our choice of cs, we have that (3.4) satisfies the quadratic growth
condition for feasible points (z,(). Since any feasible point of (3.2) is feasible for
(3.4), if follows that (3.2) also satisfies quadratic growth at (z*,0) for every feasible
point (x,¢). Since (3.2) clearly satisfies (MFCQ) everywhere from assumption [B2],
this is equivalent to the quadratic growth condition (1.16) holding for all (z,(¢) in a
neighborhood of (z*,0) [6, 7]. The proof of part 1 of the theorem is complete.

From the conclusion of part 1 we have that, since (MFCQ) and the quadratic
growth condition holds for (3.2) and, respectively, (3.3), at (z*,0) and, respectively,
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(x*,0m—1;,0n—1,,0n—1.), these points must be isolated stationary points of the respec-
tive nonlinear programs [1]. This concludes the proof of part 2.

Part 3 immediately follows from [1] since (3.2) and, respectively, (3.3) satisfy the
quadratic growth condition and (MFCQ) at (z*,0) and, respectively, (z*,0,,,—,,0n—1,,
0n—1,). Note that ¢ that enters the definition of ¥, used in the algorithm is not the
same as the one in the proof of part 1. It can be shown that now we need ¢5 > Coo,
once the latter is chosen. o

Discussion

e Note that the conditions used in the Theorem are fairly weak. The quadratic
growth is the weakest possible second-order sufficient condition. Relaxing
our Lagrange multiplier requirement would result in a problem with an empty
Lagrange multiplier set, for which few regularity results are known that could
be algorithmically useful.

e Determining that a solution point is an isolated stationary point is an im-
portant issue in nonlinear programming [35, 13, 7]. In practical terms, it
means that a nonlinear programming algorithm with global convergence safe-
guards that does not leave a neighborhood of the solution point * will in fact
converge to x*. Example of such algorithms are provided in the references
[8, 9, 10, 12, 26, 15].

e A difficulty with the definition of the algorithm is that the successful com-

pletion of the algorithm depends on the choice of the parameters ¢y, Coo,
c1, that need to be sufficiently large but finite. Note that here co, and Co
have different purposes: ¢ is needed to enforce ¢ = 0 at a solution of (3.2),
whereas ¢, is the parameter of the merit function 1500 (z) when the preceding
algorithm is applied to (3.2) or (3.3). The two are related, but we need at
least éoo > coo if we follow the proof of linear convergence from [1].
If (MFCQ) does not hold, the usual update [2, 4], that depends on the La-
grange multipliers, for the value of the penalty parameter cannot be used to
adapt o, if the original value is insufficient to result in ( = 0. An adaptive
elastic mode can be implemented where if ¢ is not sufficiently small, then the
penalty parameters are increased [22]. In Section 4 we show that such an
update works under certain conditions.

We now apply Theorem 3.1 for the case of interest in this work, MPCC. The
following corollary is a simple restatement of Theorem 3.1 for (MPCC).

COROLLARY 3.2. Assume that (MPCC) satisfies the following conditions, at a
solution x*:

e The Lagrange multiplier set of (MPCC) not empty. From Theorem 2.2, (SM-
FCQ) holding for (TNLP) is a sufficient condition for this assumption to
hold.

e The quadratic growth condition (1.16) is satisfied at x*.

e The data of (MPCC) are twice continuously differentiable.

Then the conclusions of Theorem 8.1 hold for (MPCC) and for (2.17).

Note The part of this result that leads to of Theorem 3.1 i) holding for (MPCC)
under the stated conditions is related to [36, Theorem 8]. Note, however, that the
cited result is rather an analysis tool since it involves a nonlinear program whose setup
requires the knowledge of the various active sets at the solution. Such an information
is not available in an algorithmic framework, unless we are very near convergence.
In the approach that we present in this work, the elastic mode is applied directly to
the original formulation either in (MPCC) or (2.17), and no further knowledge of the
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TABLE 3.2

Results obtained with MINOS

Problem Var-Con-CC Value | Status Feval | Infeas
gnash14 21-13-1 -0.17904 | Optimal 80 0.0
gnash1b 21-13-1 -354.699 | Infeasible 236 | 7.1E0
gnash16 21-13-1 -241.441 | Infeasible 272 1.0E1
gnash17 21-13-1 -90.7491 | Infeasible 439 | 5.3E0
gne 16-17-10 0 | Infeasible 259 2.6E1
pack-rigl-8 | 89-76-1 0.721818 | Optimal 220 | 0.0E0
pack-rigl-16 | 401-326-1 0.742102 | Optimal 1460 | 0.0EO0
pack-rigl-32 | 1697-1354-1 N/A | Interrupted | N/A N/A
TABLE 3.3
Results obtained with SNOPT
Problem Var-Con-CC Value | Status Feval | Elastic,Why
gnash14 21-13-1 -0.17904 | Optimal 27 Yes, Inf
gnash1b 21-13-1 -354.699 | Optimal 12 None
gnash16 21-13-1 -241.441 | Optimal 7 None
gnashl7 21-13-1 -90.7491 | Optimal 9 None
gne 16-17-10 0 | Optimal 10 Yes, Inf
pack-rigl-8 | 89-76-1 0.721818 | Optimal 15 None
pack-rigl-16 | 401-326-1 0.742102 | Optimal 21 None
pack-rigl-32 | 1697-1354-1 | 0.751564 | Optimal 19 None

problem is required.

Proof From Theorem 3.1 the conclusion immediately applies for (MPCC). For
(2.17) we apply Theorem 2.5 followed by Theorem 3.1 to obtain the conclusion. ¢

Consequently, when started sufficiently close to a solution and with a sufficiently
large penalty parameter, the algorithm will converge to that solution of (MPCC) or
(2.17) with a sufficiently large but finite co and ¢« as soon as (MPCC) satisfies the
quadratic growth condition and has a nonempty Lagrange multiplier set at a solution
x*. Since (SMFCQ) is a generic condition for (MPCC) and holds with probability 1
for instances of problems in the MPCC class [36] and the quadratic growth condition
is the weakest second-order sufficient condition, this convergence property is expected
to hold with probability 1.

3.1. Numerical Experiments. We conducted some numerical experiments on
MPCCs from the collection MacMPEC of Sven Leyffer. To validate the conclusions
of this work, we used two widely employed nonlinear solvers MINOS [31] and SNOPT
[22]. SNOPT implements an adaptive L; elastic mode approach.

We considered three types of problem, all of which appear in [33]

1. Stackelberg games [33, Section 12.1], which characterize market complemen-
tarity problems in which one of the players has a temporal advantage over
the others. In our table these are the gnash problems.

2. Generalized Nash complementarity points [33, Section 12.2]. In our table
this is the gne problem, an instance of the problem 12.34 in [33]. This is a
restricted market complementarity problem.

3. Optimum packaging problem. The problem involves designing the support
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of a membrane such that the area of contact between the membrane and a
specified rigid obstacle is minimized, subject to the constraint that a certain
region must be in contact [33, Chapter 10]. The underlying variational in-
equality is defined by a two-dimensional elliptic operator, which is discretized
on a grid of 8 x 8, 16 x 16, and 32 x 32 elements, which are the problems
pack-rig followed by the discretization index in our table.

With the exception of gne, all the problems have the complementarity constraints

lumped together as one inequality, as in the formulation (2.17).

In the tables showing the results for MINOS and SNOPT, we indicate the number
of variables, constraints, and complementarity constraints (“Var-Con-CC” in the first
column), the final value of the objective function, the number of function evaluations
and the final status of the run. The runs for both MINOS and SNOPT were done on
the NEOS server [32] at Argonne National Laboratory. For SNOPT, we also indicate
if the elastic mode was started and in what conditions. SNOPT can initialize the
elastic mode in two circumstances: if the subproblem is infeasible or if the Lagrange
multipliers exceed some user-specified quantity. In both examples for which the elastic
mode was started, this happened because of an infeasible subproblem, a fact that we
indicated in the Elastic, Why column of Table 3.3 by an “Inf” symbol. All the runs
except one completed: the exception was pack-rigid-32, in MINOS, which we were
forced to interrupt after it had been running on the World Wide Web interface of
NEOS for about 8 hours.

The fact that (MPCC) does not satisfy (MFCQ) does not immediately result in
the algorithm’s running into an infeasible QP and failure. But it suggests a significant
expectation that this would occur. Indeed, it can be seen that MINOS fails in more
than half of the instances of MPCCs with an “infeasible” message and a large value
of the measure of infeasibility. SNOPT, by contrast, solves all the problems presented
in a reasonable number of iterations, needing to initiate the elastic mode for two
problems after encountering elastic subproblems as shown in Table 3.3.

MINOS is a widely-used augmented Lagrangian approach whereas SNOPT is an
SQP algorithm that implements an adaptive elastic mode approach. We do not use
this comparison to demonstrate that the elastic mode approach is what makes MPCC
solvable with an SQP approach. Rather, we have used MINOS to show that otherwise
robust NLP solvers can have unpredictable failures on problems from the MPCC class
and that the difficulty of MPCC is not trivial. Also, the fact that the elastic mode
was initiated for SNOPT shows that the use of the elastic mode considerably increases
the robustness of sequential quadratic programs, since otherwise SNOPT would have
failed with an Infeasible diagnostic. The elastic mode approach is guaranteed to
succeed for a finite penalty parameter under the conditions discussed in this paper.

4. A superlinearily convergent algorithm for MPCC. In the following, we
present a superlinear convergence result for a special but widely-encountered type of
algorithm that uses exact second derivatives. Here we extend the work in [16], in
that we relax one assumption that was critical to the convergence proof: that the
iterates satisfy either the complementarity constraints or the feasibility conditions
for the unrelaxed quadratic program. We will show that in certain distinguished
cases, an adaptive elastic mode approach can be used to induce either feasibility or
complementarity for all iterates from which superlinear convergence follows from [16].

We assume that the complementary variables are the last components of the
unknown vector z. This is not a restrictive assumption: any MPCC can be recast in
such a form by using slack variables [16].
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Consider the MPCC:

minimize f(z)
subject to gi(x) < 0 i=12,....,n
h](l.) =0 .7:1;27 y 15
(4.1) (MPCCS) iy <0 k=12 . . .n
T2 < 0 k= 1,2, y e
She wpwe, < 0.

To simplify the subsequent notation, we assume that we are interested in local
convergence to a solution z* that satisfies:

T =0k=1,2,...
(4.2)

We also denote by 1 = (z11,221,- .., Tn,1) and by o = (212,222, . .., Tpn,2). With
this notation, the complementarity constraint becomes 27 2o = 0, or, equivalently over
the feasible set of (MPCCS), 27 x5 < 0.

Note that here we use a more specialized notation convention for the various
index sets, same as in Fletcher and al. [16], that is related to the objects defined in
(1.22)—(1.26), for which the notation is the same as in [36]. This is because we will
invoke at times results from [16]. The connection between the two notations, however,
can be immediately determined. We have the following relations that tie in the two
notations.

JMey, T =0,k=1,2,...,n4, x}o <0,k=n4dy1,...,Nc.

I(z*) = {(na+1,1),(na +2,1),...,(ne, 1)},

Z(a:*) ={(ng+1,2),(na+2,2),...,(n.,2)},

D(z*) ={(1,1),(1,2), (2, 1) (2 2),..,(na, 1), (ng,2)},
@(x*):{nd—i—l nd+2 }

K(z*) = {1,

To prove our convergence results, we will invoke stronger conditions than in our
preceding sections. One such condition is MPEC-LICQ. We say that (MPCCS) sat-
isfies MPEC-LICQ at x*, if the associated relaxed nonlinear program satisfies the
linear independence constraint qualification (LICQ) at «*. Specifically, the condition
is expressed as:

vpEC-LICq: ¥ 9T Mieaen s Vohi@)liio n s ertliziz e
" ek2lp=12, . n, arelinearly independent.

As opposed to the preceding sections, where a symbol e was used to denote the
vector of all ones, in this section we denote by e, € R™ a vector that has zeroes
everywhere, except in the * position, where it has a 1. We also denote by A(z*) the
set of inequality constraints that is active:

Alz*)={ili=1,2,...,n4, gi(z*)=0}.

For an arbitrary point x, we denote by:

Alz)={ili=1,2,...,n4, gi(x) >0}.
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The associated (RNLP) is:

minimize  f(z)
subject to gi(z) < 0 i=1,2,...,n
h](l') = 0 j:1,2,...,nj
(4.3) (RNLPS) v < 0 k=12  .my
T2 < 0 k=1,2,...,nd
Tkl =0 k:nd+17...7nc.

and, if 2* is a local solution of (MPCCS) and MPEC-LICQ holds at z*, then z* is a
Karush-Kuhn-Tucker point of (MPCCS) [36] as well as a local solution of (RNLPS). If
MPEC-LICQ holds at z*, we have that LICQ holds for (RNLPS) at 2*, and (RNLPS)
has a unique Lagrange multiplier at the solution: (7,7, fi,77), that satisfies

v >0, ﬂklzoa ﬂk2207 k:]~727"‘7nd

“Vaof(@*) = Yicaw- UiVagi(z®) + 3005, Vahi(a*)7;
+ D orty (fkrert + fkzera) + s, o1 fik1€k1

Here we use the natural implicit convention that 7; = 0 for ¢ ¢ A(x*), which we
will use at other points since this way we can treat the multiplier as a vector that
satisfies the complementarity constraints corresponding to the optimality conditions.
However, at times we will refer to v or similar quantities as to a vector with n;
components, especially in a solution stability context.

Associated to the MPEC-LICQ assumption, we can define strong second-order
sufficient conditions.

LICQ holds at z* and sTV2_L*s > 0, Vs € Crnrps Where
(MPEC — SOSC) V2,L* is the Hessian of the Lagrangian evaluated at (z*, 7,
7, 1, M) and Crnrps is the critical cone of (RNLPS) at x*.

In the rest of this work we invoke the following assumptions,

[A1] f,g,h are twice continuously differentiable.

[A2] (MPCCS) satisfies MPEC-LICQ at the solution z*.

[A3] (MPCCS) satisfies MPEC-SOSC at the solution z*.

[A4] 7; >0,i€ A(z*), m; #0, j =1,2,...,ne, and either fig; > 0 or fixe > 0 for
k= 1,2,...,nd.

[A5] When a QP is solved, the QP solver picks a linearly independent basis.

In relation to assumption [A4], if fig; > 0, for k one of 1,2,...,ny4, we say that
the constraint xx; < 0 is a constraint in a degenerate pair that is strongly active
(at «*). Similarly, if figa > 0, for &k one of 1,2,...,n4, we say that the constraint
Tpo < 0is a constraint in a degenerate pair that is strongly active. In these terms, the
portion of assumption [A4] referring to degenerate pairs can be stated as: at least
one constraint from each degenerative pair is strongly active.

The assumptions [A1]-[A5] are identical to the assumptions with the same name
used in [16]. Note, however, that at no point in this work we will invoke either
Assumption [A6] (that the current point satisfies the complementarity constraint
T2y = 0) or Assumption [A7] (that all subproblems are feasible) from the same
reference. As we later show, for suitable values of the penalty parameter, the elastic
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mode approach that we present here will induce one of the situations covered by these
two assumptions, without the need to assume it from the outset.

We now explore in more details the relationship between the Lagrange multipli-
ers and the second-order conditions of (RNLPS), (MPCCS), and of an elastic mode
relaxation of (MPCCS).

In the following analysis, an important role will be played by the fact that we will
assume that the elastic mode implementation enforces the linear constraints exactly.
To that end, we assume that:

gi(x), i=1,2,....,1,

This is not a restrictive assumption: it is only a bookkeeping convention, since we
allow I; and I, to be 0. Also note, following from our assumption [A2], that MPEC-
LICQ holds at z*, that we have that the assumptions [B1] and [B2] that were used
for the elastic mode defined in Section 3, will automatically hold here.

We now present an L., elastic mode approach. An L; approach with similar
properties can be defined, exactly as used in SNOPT [22]. We use the L., approach
because of notational convenience: only one extra variable is needed. In this case, the
relaxed MPCC becomes:

hj(z), 7 =1,2,...,l. are linear functions.

minimize f@) + ool
subject to gi(x) < 0 i=12,...,];
gi(LL') < ¢ i=L+1,...,n
h](x) = 0 j:1,2,.. ,Ze
(MPCC(c)) —(< hj(x) < ¢ j=letlne
L1 S O k = 1, 2, . s Ne
Tko < 0 k=1,2,...,n,
Sty wrake < ¢
¢ > 0.

When MPEC-LICQ holds, we can say more about the relationship between the
multipliers of (RNLPS), (MPCCS) and (MPCC(c)), than we did in Section 2. The
Lagrange multiplier set of (MPCCS) is not empty at z*, following [36]. Therefore,
there must exist v;, i € A(z*); mj, 7 = 1,2,... ,n¢; pgr, for k =1,2,... ,nc; and pupe
for k =1,2,...,ng4; and nn € R, that satisfy the KKT conditions for (MPCCS):

~V.f(z*) DicA(eey ViVagi(®) + 3050, Vihy(a*)mj+
+ >t (pkiert + pgzers) + ZZC:MH br1€g1 + 1 ZZC:MH TioCkl,

as well as the inequality constraints v; > 0, ¢ € A(z*), ppr > 0, k = 1,2,...,n,
pr2 > 0, k= 1,2,...,ng and n > 0. Here n is the Lagrange multiplier of the
complementarity constraint of (MPCCS) zf'zy < 0.

One immediate consequence is that (MPCCS) has a Lagrange multiplier that
is minimal (in terms of the 1 norm) [16]. We call that multiplier the fundamental
multiplier. Comparing the algebraic expression of its components in terms of the
components of the multiplier of (RNLPS) we obtain:

*

vt = U
™ = 7
Per = fk >0, k=1,2,...,ng
(FMC) /1‘22 - ﬂk? > Oa k= 1; 2a <oy Ng
/’l’zl = [Lkl - 77*1';2 2 07 k = N4 + ]-7 777‘6
n* max {O, MAXf—py+1,....m0 {551 }} >0
k2
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Since LICQ holds, it is immediate that (MPCCS) has a degeneracy of order 1
and thus its Lagrange multiplier set will have dimension at most 1. Therefore any
multiplier of (MPCCS) must satisfy:

*

14 = 14
T = 7
(4.4) BPE1 = /}}tl >0, k=1,2,...,nq
fke = [l >0, k=1,2,...,n4
el = fgp—arge >0, k=ng+1,...,nc
n = n'+a >0,

where a > 0.

We now write the KKT conditions for the relaxed problem (MPCC(c)) at (z*,0),
assuming that (z*,0) is a stationary point of (MPCC(c)), an assumption for which we
will later determine sufficient conditions for it to hold. We have that, for a Lagrange
multiplier of MPCC(c) with components 7;, i € A(z*); #;, for j = 1,2,...,1; fr;r,
associated with the inequality h;(z) < ¢ and 7r;, associated with the inequality
—hj(x) <, j=le+1,...,n¢ figr for k =1,2,...,n¢; fige for k=1,2,...,nq; and
7), associated with the complementarity constraint 7 xo < ¢; and 6> 0, associated
with the inequality ( > 0, we can write the KKT conditions:

* ~ * le *\
—Vaof(@7) = Yica) ViVadgi(®™) + 2272 Vah;(a™)7;
St i1 Vahi(a®) (77 = 77) + 2202, (fkrert + finzens)
Ek;nd,Jrl firierr +1 Zklndﬂ (3022@@1) )
Coo = Dlimlitl,ms, icA() Vi T 255041 (77 +77) +0+0.
If MPEC-LICQ holds, and (z*,0) is a stationary point of (MPCC(c)), then, using

(4.4), we obtained that any Lagrange multiplier of (MPCC(c)) must satisfy, in terms
of the components of the fundamental multiplier, the following relations:

+ +

v, = vUf >0 i€ Alx")
o= T J=12,...1l,
A;f = max{r},0} + f; >0 j=Il.+1,...,n,
7, = max{-7,0}+ f; >0 j=l+1,...,n
/lkl = /”LZI >0 k=1,2,...,nd
4.5 N *
( ) HE2 = Hgo 20 ]{?:1,2,...,77,,1
/lkl = le—amk2 ZO k:nd+17...,nc
o= n"+a >0
0 Coo*Z?éli 171‘5,4(;5*)’%

Yt (7 +77) =0 20,

where a > 0, and f; > 0, for j =1, +1,...,n.. Here g is the Lagrange multiplier
of the constraint ¢ > 0 and the requirement 6 > 0 results in a condition on the
value that co, must take for (z*,0) to be a stationary point of (MPCC(c)). We do
not add the complementarity constraints that appear when applying the first order
optimality condition, since these are automatically satisfied by our choice of active
set and multiplier components.

Rewriting 0 in terms of the fundamental multiplier (FMC), we obtain that:

Uz Ne

(4.6) 0=coo — Z Vi — Z (|71 +2f;) =n* —a>0.

i=liy1,i€A(T*) j=le+1
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We denote by 1 the following quantity, that is also defined in terms of the components
of the fundamental multiplier (FMC):

Uz

(4.7) vy = Z vi + i: |7+ 0"

i=liy1,i€A(z*) j=le+1

Since the values of the fundamental multiplier are fixed, and since a > 0 and f; > 0,
j=le+1,...,n, the condition for (z*,0) to be a stationary point of (MPCC(c)) is:

Coo > Z v+ E 71'; +n* = 1.
i=l;11,i€A(z*) j=le+1

The set of Lagrange multipliers of (MPCC(c)) is defined by f; >0, j =1l +1,...,n,
and a > 0 that satisfy the inequality 6> 0, that is,

(4.8) Coo — V2> i (2f;) + a.

J=lot1

An immediate consequence is that, if ¢s, = g, then the program (MPCC(c)) has
a unique multiplier! This is formally stated in the next result.

4.1. Second-order conditions. LEMMA 4.1. Assume that (MPCCS) satis-
fies MPEC-LICQ and MPEC-SOSC. Assume that cs satisfies coo > vg. Then
(MPCC(c)) satisfies (MFCQ) and (RSOSC) at (z*,0). In addition, if coo = vy,
then the Lagrange multiplier set of (MPCC(c)) at (x*,0) has a unique element.

Proof Consider one multiplier of (MPCC(c)), whose components are: ; > 0 for
i€ Ala*); w for j =1,2,...,l; 77 > 0and 7i; >0 for j =le+1,... .0 figr >0
and fige > 0 for k=1,2,...,nq; g >0 for k=1,2,...,ng;% >0 and 6 > 0.

The Hessian of the Lagrangian at z* corresponding to this Lagrange Multiplier,
accounting for only the nonlinear terms, and using (FMC) and (4.5), is the following:

+ 1l

Z;ilﬁ-l,ieA(ac*) 0iV2,9(@) + 0> re (ef er2 + €lger)
Ne
= vizf(x*) +Zj:l€+1 ﬂ-;vimhj(x*)
Uz * ~ Ne
+ Zi:lﬁ-l,ieA(m*) v Vﬁxg(:r,*) + 772k:1 (e{lekg + egzekl)

= vixﬁRNLPS(JC*) + 7 22;1 (egl ero + 6{26161) .

The Hessian of the Lagrangian of (MPCC(c)) should also be computed with respect to
¢, but, since the contribution of ( is linear both in the constraints and in the objective
function of (MPCC(c)), it follows that the Hessian of the Lagrangian is:

v2,.L (z*,0) 0
2 * _ zax~MPCC(c) ’ nx1
Vi@ Lrpoce (@, 0) = ( Orn 0o )

Note that, from Lemma 2.1, we have that Cy;pccs = Cryrps at =¥, where by C we
denote the critical cone of the respective nonlinear program. When co, > 1g, since
x* is a stationary point for (MPCC) and (z*,0) is a stationary point for (MPCC(c))

we will have that Cyrpcce) = Cupccs @ {0}. Let now (u,0) € Carpec(e) and thus
u € Crnrps.- We have that:

(4,0)"VE, o woyerpec(w,0) = u'Lypocyu =u" Lrnrpsu
+ 20350 (efyu)(efyu) > u" Lryppsu > 0,
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where the last two inequalities follow, respectively, from the fact that, on the critical
cone of (RNLPS) we have (e}, u)(ef,u) > 0, for k =1,2,...,n4, and (el u)(elfyu) = 0,
for k=ng+1,...,n., and n > 0, and, respectively, from the MPEC-SOSC assump-
tion. Since we obtained, for any multiplier of MPCC(c), that:

Vi€ Cypec = 0 VigeywoLmroo (@, 0)i >0,

this means that Robinson’s condition (RSOSC) holds for (MPCC(c)) at (z*,0). Since
(MFCQ) clearly holds at (z*,0), the conclusion of the lemma follows. The uniqueness
of the multiplier for the case coo = v follows from (4.8). S

4.2. The algorithm. We now consider the effect of applying SQP to MPCC in
either the original or the relaxed form. As matrix W of the QP we use the Hessian
of the Lagrangian, with the Lagrange multipliers computed at the previous step.

We define the following matrix W at the point z:

Vixf(x) + Zz I4+1 Vzvmgz( )
o 1 (7 = 75) V2,h(2)
+ Yy (egﬂfk? + ek2€k1)

W = or, alternatively,

vixf(x) + Z:Ll +1 Vzvx:cgi(z)
+ ZJ Loa1 T Vaghi(z)
S DY (€k16k2 + efaert)

where the first branch is followed in the quadratic program associated with the re-
laxation (QPMC(c)) was solved at the preceding iteration, and the second branch is
followed if the quadratic program associated with the unrelaxed problem (QP(z), to
be defined later) was solved at the preceding iteration.

Consider now the following quadratic program associated to (MPCC(c)) at point

(, Q).

mingg, 3d"Wd+ V,f(2)d + coo(C + de)
gi(r) + Vagi(z)d < 0 i=1,2,...,1;
gi(x) + Vagi(z)d < (+d; z_l+1 Y
hj()+Vh()d = (+de j=12,...,1l
(:c)-l—Vh( pd < CHde j=leg1,...,ne
(@PMC(e)) sbj. to hj(x) = Vzhj(zp)d < C+de j=leg1,..., N
-'L'k1+dk1 < 0 k=1,2,...,n.
Tpo +dge < 0 k=1,2,...,n.
wfdy +aldy +aTes < (+d;
(+de > 0.

To obtain results for the application of the algorithm to (MPCCS), we state and
prove the following stability result for general nonlinear programming.
LEMMA 4.2. Consider the nonlinear program:

ming  f(x)
subject to  hj;(x

lsx
S
IA



28 M. ANITESCU

Assume that it satisfies (MFCQ) and (RSOSC) at a solution x*. We denote the
compact Lagrange multiplier set of this nonlinear program by A(x*).
Consider the Quadratic Program:

ming Vo f(x)d+ %dTWd
subject to  gi(x) + Vzgi(x)d < 0,i=1,2,...,m
hj(x)—i—Va:hJ(x)d = 0,57=12,...,m

where W = V2_f + Py V2, hi(x) + 32 v V2 Gi(x). Let d be a solution of this
quadratic program, and v™ and nT its Lagrange multipliers.

Then, there exist € > 0, ¢c; > 0, c2 > 0 such that dist (v, 7); A(z*)) < € and
dist (z; 2*) < € imply that

o (i) o llo—a|| < ld]] < ez e — 2™,
o (ii) dist ((vF,7T); A(x*)) < co ||z — 2*]|.
Here dist (+, ) denotes the distance between two sets.

Proof The rightmost inequalities in both part (i) and (ii) are a consequence
of [40, Theorem Al]. In that reference, the inequality-only case is treated, but the
conclusion can be immediately extended for the case where there are also equality
constraints, that are linearly independent and that, together with the inequality con-
straints, satisfy (MFCQ). Since (MFCQ) holds, we have that:

jo+d) < O(WP) < O — o)
hz+d) < O(ld]]") < O(lJx — z*|[).
This implies that the size of the infeasibility, Z(z), where

7o) = max{ e (5@, mx ()}

=1,2,....,n; J=1,2,....,n¢

satisfies Z(x) = O(||d||). Using the result [40, Theorem Al], as well as l{+ >0
and the optimality conditions for the QP, we obtain that, since Wd = —V, f(z) —

Vg  (z)vT — VohT (z)rt, we have that:

Q[ — 2| + dist (vF, 77); A(z"))) =
maX{Hwa(x) + Vg(z)vt + VIB(JU)W""

I(@) | = O(lld]).

In turn, this implies that there exists a ¢; > 0 such that ||z — 2*|| < ¢ ||d||, which

completes the proof. o
THEOREM 4.3. Consider the quadratic program (QPMC(c)), whose solution is

(d,d¢). Assume that coo — Vg = Yo > 0. There exists € > 0 and co > 0, such that, if

dist ((ﬁ,ﬁ,ﬁ,{aﬂl,m,ﬁ,é) ;AMPCC(C)> < e and dist ((z, ¢); (¢*,0)) < e,

then
o i) [|d]| + [|dc]] < co(llz — 2*[| +C).
een q: Al Al adt At oad a4 oad A N
L 11) dist <(V+,7T+,’/T+ y T ’MIF’M;F’,,?Jr’aJr) ;AMPCC(C)) < C()(HSU—I' H+C)

Here the first vector is a Lagrange multiplier solution of (QPMC(c)) at (z,().
+

ﬁ;j -7 —77;’ <colllr —x*|[+ (), for j=le+1,...,n.. Here ] is

the corresponding component of the fundamental multiplier (FMC).

o iii)
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o iv)
— Bither ( +d¢ =0,
— Or the point x + d satisfies the complementarity constraints, and the
strongly active variables that are in degenerate pairs at x* are active.
Note Here the components of the multipliers are as follows: 2 is considered to
have n; components, though only the ones corresponding A(x*) may be nonzero close
to the solution (z*,0), # has I, elements, 4% and #~ have n, — [, elements, ji; and
[12 have n. elements. The last n, — ng components of [io are equal to 0, by virtue of
the optimality conditions for (MPCCS), (MPCC(c)) and (4.2).
Proof Parts i) and ii) are an immediate consequence of Lemma 4.1 and Lemma
4.2. Part iii) follows from Part ii), (FMC) and (4.4), using the relations:

_ ﬁ;* _ (max{w;‘,O} + fj — max{-m7,0} — f])‘
_ (max{ﬂ;‘,O} + fj)‘ + ‘ﬁ;+ — (max{—wj*,O} + f])’

T o—w; —m = A;r+
< &t
= J

for j=1lc+1,...,n.

For Part iv), since ¢ +d; > 0, we need to analyze only the case where ¢ +d; > 0.

In the latter case, we obtain that, for any j, j = [; + 1,...,n;, only one of the

constraints —( —d¢ < hj(z)+Vzh;(x)d and hj(z)+ Vzh;(x)d < (+d¢ can be active

and therefore only one of the multipliers ﬁ;“Jr >0 and frfr > 0 can be positive, that

is,

(4.9) it E =0,

Using Part ii), we get that there exists

s

(’}*77}*37}+ 77%7 7ﬂTaﬂ;7ﬁ*50*) GA]\/IPC’C'(C)

such that:
1o+ =7l 4 1 =l + [ [+ = 4| | w |+ A -
s = i)+l =l + || = 67| < eo (e — a1l + ).
(4.10)
In particular, for j = 1. 4+ 1,...,ne, we obtain from (4.10) that:
(4.11) i a7 - w7 || <o (llz— 2]+ Q).
Note that, from (4.5) we have, for j =1, +1,...,n, that
ﬁj = max{7;,0} + f;, 7%; = max{—7;,0} + f;,
for some f; > 0. We have two cases, for each j =l +1,...,n.. One of them can be

discarded by using the first part of the assumption [A4]. However, to maintain the
assumptions we use here at a minimum we will not invoke it at this point.

L. 7} # 0, where 7} is the corresponding component of the fundamental mul-

tiplier. Assume that 77 > 0. Then (FMC) and (4.5), together with part ii)
implied that for e sufficiently small we must have that ﬁ;r+ > 0, and thus, us-
ing the equation (4.9) we obtain that ﬁj_+ = 0. Since from the last displayed

equation we must have that fr; = f;, we use (4.11) to obtain that:

(4.12) fi <co(lle =¥ +¢).
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The same inequality holds for the case where 77 < 0.

2. Assume now that 77 = 0. In this case we have that fr] =

we apply again (4.9) followed by (4.11), we obtain that (4.12
Therefore (4.12) holds in any case.

Since we were under the assumption that ¢ + 6¢ > 0, the optimality condi-

tions of (QPMC(c)) imply that 6t = 0. In turn, this and (4.10) imply that 6% <

co ([|lz — z*|| + ¢). Using the last inequality as well as (4.6) and (4.12) we obtain that:

o = fj. After
) holds.

(4.13) a = coo — 0% — 1y — 2 Z fi =7 —co(2(ne —le) +1) ([Jx — 2| + C) -

j=le+1

Using now (4.10), and the relationship between the multipliers of (MPCCS) and the
fundamental multipliers (4.5), we obtain that:

/121_,&1:1 :|ﬂz1_(ll21_ax22)|SCO(Hm_CU*|‘+O, k=ng+1,....n

This implies, using (4.13), and that, from (FMC), u}, > 0 for k = ng + 1,...,n,,
that:

fify > (g — axis) — o (||lz — 2*|| +¢)
> —0zhy — co ||z — 2| + ) (2(ne — L) + 1) 2}y + 1)

We clearly obtain that, if we choose € > 0, and thus ||z — z*|| + ¢, sufficiently small
then we must have i}, > 0, k = ngy1,...,n.. This means that, in (QPMC(c)), the
constraints xx1 + di1 < 0 must be active, that is, i1 +dg1 =0, for k =ngyq1,...,ne.
In addition,using part ii) of the proof, (FMC), (4.4), Assumption [A4] and the com-
plementarity relation in the optimality conditions of (QPMC(c)), we obtain that at
least one of the inequalities

Tr1 + dg1, T2 + dio.

must be active for any k = 1,2, ..., ng, the one that corresponds to the positive funda-
mental multiplier. This implies that when we define 1+ = x +d, the complementarity
constraints will be satisfied, and all constraints that are in a degenerate pair with
positive multipliers will be active. This completes the proof. o
Note that we have used only the last part of the assumption [A4], and we have not
assumed anything about the strict complementarity of the multipliers of the nonlinear
inequality and equality constraints of (MPCCS). In effect, in this work we need the
assumption [A4] as stated only at the points where we invoke results from [16].
THEOREM 4.4. Consider the quadratic program (QPMC(c)). Assume that ¢oo —
vo =y > 0. There exists € > 0 and such that, if
1. dist ((z, ¢); (z*, )) <,
2. dist ((V 7, ot ST ,ul,ug,n,ﬁ) ;AMPCC(C)) <€, and
8. x satisfies the complementarity constraints, and the strongly active constraints
from the degenerate pairs exactly.
Then
i) (+d¢=0,
ii) the strongly active constraints from degenerate pairs are active for (QPMC(c))
at x,
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iii) = + d satisfies the complementarity constraints.

Proof
Let
+ TIZk=1 (6k16k2 + ek2ek1) .
Let
W=V fl)+ Y (& —#7) Vishi() + Y 0:Vi.0i(x).
j=le+1 i=l;+1

Note that, from (FMC) and (4.5), we obtain, similarly to the conclusion of Theorem
4.3 iii) that:

(4.14) ‘ﬁ';r—ﬁ';—ﬂ'ﬂ <e j=l.+1,....,n. and |—v]|<e i=L+1,...,n
Let
Zi(x)={k€l,2,....ncap1 =0}, 2Z5(x) ={k €1,2,...,nc|rr2 = 0}.
Also, denote by
Zix)t ={1,2,...,n.} — Zi(z), Za(x)t ={1,2,...,n.} — Za(x).

Recall, we assume that z satisfies the complementarity constraints which means that
Zi(x)UZs(x) ={1,2,...,n.}. The degenerate indices are the indices k at which both
complementarity Varlables are 0, that is xx; = a2 = 0. We denote by D(x) their
set and we have that D(xz) = Z1(z) N Z2(x). In the definition of these index sets, we
use the same notation as in [16] since we will invoke key results from that reference.
These index sets are similar to the ones defined in (1.20-1.26), although we will use
them at points other than x*.

Due to our assumption that the complementarity constraints hold at x, we must
have that Zi(z), Z5-(x),D(z) form a partition of {1,2,...,p}. We now examine
the difference between Zi-(x*) and Zi-(z). The following discussion is similar to
the one following proposition 5.1 in [16]. We clearly must have Zi-(z*) C Zi-(x),
since Zi-(z*) contains only indices that are inactive at #* and, therefore, in an entire
neighborhood of z*. Let k € Z{-(x)\Z{ (2*), which means that x4 < 0 and x}, = 0.
Since x satisfies the complementarity constraints, we must have that k ¢ Z3-(z) and
therefore k ¢ Z5-(x*). This implies that k& must be a degenerate index at z*, and
thus k € D(z*). We therefore have that:

(4.15) Z1(2") C Z1(x) C Z1(z) UD(x™) and Z5(z") C Z3(x) C Zo(z) UD(x").

An important consequence of this relationship is, using (4.2), that we must have
{na+1,...,n.} C Z1(x) for all z in a neighborhood of z* that satisfy assumption 3
from the statement of this Theorem and that {1,2,...,n4} = D(z*).

Consider the following unrelaxed quadratic program, which is (QPMC(c)), with
the additional requirement that ¢ + d¢ = 0.

ming 3d"Wd+ V, f(z)d

gl(x)+v$gl(x)d < 0 = 1527' y T
hj(ft) + th](x)d = 0 J= 1; 2, y e
(@P(z)) sbj. to Tpi+tden < 0 k=1,2,...,n,
$k2+dk2 < 0 k= 1727 y e
oldy +afdy + 2Tz, < 0.
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This quadratic program corresponds to a direct application of the SQP algorithm to
MPEC (without relaxation). Also, consider the following quadratic program at x, cor-
responding to a Z(&) = Z = {Z1(Z), Z2(%)} that defines a partition {1,2,...,n.} =
Z#(#)U Z5(2)U D(2), as introduced in the preceding paragraphs. Here we consider
the situation where Z = Z(%) is associated to a point & in a neighborhood of z* that
satisfies assumption 3 of this theorem.

ming 3d"Wd+ V. f(z)Td
gi(z) + Vaegi(x)Td < 0 i=1,2,...,n;
h](:ﬁ)+Vxh](x)Td = 0 j=1,2,...,n
(QPr(z,2)) {4 dy = 0 kezt
i to dio = 0 keZzZi
Trpitdin < 0 keZ
Tpe+drpe < 0 ke Z.

From assumptions 1-3 of this Theorem and from (4.14), we obtain that (QPr(z, Z(z)))
and (QP(x)) have the same feasible set and their objective functions has the same val-
ues on the feasible set [16, Lemma 5.1, Lemma 5.2] and thus have the same solution.
The solution d of (QPr(z, Z(x))) is the only strict local minimum in a neighbor-
hood of d = 0 and the corresponding multipliers v, 7, g1, tg2 are unique, due to the
MPEC-LICQ assumption [A2]. Moreover, d is also the only strict local minimizer of
(QP(x)) in a neighborhood of d = 0 [16]. However, since we need a more specialized
version of the results in [16], we will provide our own proof, at least for the part of
(QPr(z, Z(x))) having the same stationary point as (QP(x)).

Stability of the primal-dual solution of (QPgr(z, Z)). We note that if Z =
Z(2) = {Z1(2), Z2(2)}, where & is a point in the neighborhood of z* that has the
properties stated in assumption 3 of this Theorem, then we will have that:

{na+1,...,n.} C Z5(2) N Z1(2).

Therefore the constraints of (QPr(x, Z(Z))) that correspond to k € {ng+1,...,n.},
will be the following:

(4.16) dr1 =0, Tpe +dg2 <0.

If we take z = * in (QPgr(z, Z(Z))), we obtain that d = 0 is a solution at which z}, +
die <0, for k =ng+1,...,n.. . Therefore all active constraints of QPr(z*, Z(%))
are active constraints of (RNLPS). In addition, from (4.16) we get that the active
inequality constraints of QPr(x*, Z(£)) are a subset of the ones in (RNLPS).
Therefore, we obtain that
a) Since both (RNLPS) and QPr(z*, Z()) satisfy LICQ, then 7; for i € A(z*);
m; for 5 = 1,2,...,m¢; fipr > 0 and and fige for £ = 1,2,...,n4; and
g1 for k= ng + 1,...,n., the components of the unique Lagrange mul-
tiplier of (RNLPS) are also the components of the Lagrange multiplier of
QPr(z", Z(1)).
() From part a), and our observation concerning active sets, we also obtain the
following relationship between the critical cones Cqpy(2,2(z)) C CRNLPS-
From assumptions [A2] and [A3] we obtain that, for x = z* and at d = 0,
QPr(z, Z(z)) satisfies (LICQ) and (RSOSC). Therefore, using the stability results
from [35], we obtain that for any Z that satisfies assumption 3 in a neighborhood of
x*, we will have that there exists a cz, that truly depends only on Z(&), that satisfies:

ld(z, Z@)Il < czlle =", (v, mpn) — (7,7, 50)|| < czlle— ™|,
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where d(x, Z(Z)) and, respectively, (v, m, u,n), are the solution and, respectively, the
Lagrange multiplier of (QPr(z, Z(Z))). Since the number of partitions that lead to a
particular Z is finite, it follows that there exists ¢ such that for any & that satisfies
assumption 3 a neighborhood of z*, and for any x in a neighborhood of z*, we have
that:

(STAB) |ld(z, Z(@))I| < éllz =", (w7 pm) = (0,7 D) < &z — 2]

In the rest of the proof, we will use this result for x = 2, but this choice does not
affect (STAB).

Constructing a Lagrange multiplier of (QP(z)) starting from a Lagrange
multiplier of (QPg(x,Z(x))). Consider the Lagrange multiplier v, , g1, tr2 of
(QPgr(x,cZ(x))). We must have that:

(4.17) 0=V, f(x)T + Wd + Vaug(x)Tv + V,h(z)Tm + Z prier; + proer,.
k=1

From the optimality conditions of (QPr(z, Z(x))), we have that ux; > 0, k € Z5(x),
and pgo > 0 for k € Z1(x).

We want to show that there exists a choice of n > 0 and uil, and uﬁm, k =
1,2,...,n., such that:

0 = VofT(x) +Wd+ Vg7 (z)v+ V, hT(z)7

4.18 .
( ) + D (N’h@gl + Nﬁfgz +n (xk?egl + :cMefQ)) )
where /‘2;1 >0, Miz >0, for k=1,2,...,n. and a1 + dg; < 0 = ,uj,il = 0, and
Tro +dgs < 0 = /‘22 =0, for k = 1,2,...,n.. This would result in d being a
stationary point of (QP(x)).

Since Wd = Wd + 1>, (exadia + ex1di2), we obtain from (4.17), for any 1,
that:

0 = Vof(e)' +Wd+ Vaug(x)'v+ Veh(z)m+nY 1 (wreel, + zriel,)
+ Yy ((wr — nzke — Adi2) ety + (k2 — nre1 — Ndi1) €1y -
(4.19)
We want to show, based on the previous equality, that the choice

(4.20) il = pri — e — Ady,  wherei=2—i+1,i=1,2

satisfies the multiplier conditions, for the appropriate choice of n > 0.
Recall, we assume that z satisfies Assumption 3 from the statement of this The-
orem. We have the following cases.

o ke Zi(x)N Z3(z) = D(x). From Assumption [A4], if z is sufficiently close
to z* we must have that k € Z;(z*) N Z3(z*) and that at least one of fix;
and figo is positive. Using (STAB) we get that at least one of ug; and ik
is positive. We assume without loss of generality that uz; > 0 which means
that we must also have xy1 + dj; = 0. This implies that, since k € Z1(x), we
must have that xx; = 0, and thus di; = 0. Since k € Z5(x), we also have that
Tro = 0 and thus, from the inequality zpo + dio < 0, we obtain that die < 0.
Since k € Z;(x) N Z2(x), from the optimality conditions for (QPgr(z, Z(z))),
we obtain that pg; > 0 and pre > 0.
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In this situation, the choice (4.20) results in the following relations:
phy = i — ndra > 0, pihy = piga > 0, ¥y > 0.

In addition, if zpo + dx2 < 0, then pugo = 0 and thus ,uﬁ2 =0.
e k€ Zi(x). Then w31 < 0, 232 = 0, dpo = 0, and g1 > 0. In this situation,
the choice (4.20) results in the following relations:

u;ﬁﬂ = pg1 — NTE2 — Hdge = g1 > 0,V > 0.

In addition, zp; + dgy < 0 implies that pg; = 0, from the optimality condi-
tions of (QPg(z, Z(x))) which in turn implies that ,uukl = 0. For the second
multiplier, the choice (4.20) results in the following relation:

Who = b2 — NT1 — g
which is nonnegative as soon as

n > — k2 + Ndi1

4.21
(4.21) 2 —

e k€ Z5-(x). Then x4 < 0, 21 = 0, dj; = 0, and the choice (4.20) results in
the following relation:

,u;ﬁﬁ = pr2 — NTE1 — Hdgr = g2 > 0,V > 0.

In addition, zpo + dgo < 0 implies that pge = 0, from the optimality condi-
tions of (QPg(z, Z(x))) which in turn implies that unm = 0. For the second
multiplier, the choice (4.20) results in the following relation:

' A
K1 = Mkl — NTk2 — Ndg2,
which is nonnegative as soon as

n > — g1 + Ndi2

4.22
(4.22) N —Tk2

From equation (4.21) and (4.22) and using the choice (4.20) to define ,u?ﬂ and ,u?cQ
we have that (4.18) holds together with,

phy >0, 4l >0, k=1,2,...,n,
as well as
T Hd <0=ph =0, k=1,2,... 10 Tro+dpe <0=pl, =0, k=1,2,...,7n,,

provided that the following holds:

(4.23) 7 =maxq0, max {_“’62”‘1’“} max {—/‘kl”%}
’kGZIL(m) —Tk1 7k€Z2L(z) — T

This shows that v, 7, ug, ug, 7, is a Lagrange multiplier of (QP(z)).
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Constructing a Lagrange multiplier of (QPMC(c)). We want to now show
that we can construct from this multiplier a Lagrange multiplier for (QPMC(c)).
This would mean that the solution d of (QP(z)) can be extended to the solution
(d,0) of (QPMC(c)) and would prove the claim i).

To that end, we claim that the multiplier we chose above approaches the funda-
mental multiplier. Tracking back the expression (4.20) we obtained for uil and ,ui2,
and since d — 0 as x — 2%, from (STAB), this claim follows if we can show that n
approaches n*, where the latter is the corresponding component of the fundamental
multiplier.

Comparing the definition of n*, with the definition of 7, we see that they are
different in two respects: 7 includes components of d, the solution of (QPgr(z, Z(x)))
and the maximums defining 7 are done over larger sets.

We now show that sufficiently close to the solution we have that:

— "d o Ad

)
keZ! (a*) —Tk1 kEZS (a*) — T2

and that in effect, for = sufficiently close to z*, 1 can be defined as if the sets Z;(x)
and Z,(z) are computed at z = z*. In turn, using (4.2) and (STAB), this will result
in the following relation:

- nd —
(4.25) 7 = max 1 0, max ZH 02 | doo 0.
ke{nd+1 ----- nc} —Tk2

Using (STAB) we obtain that:
(4.26) bri >0 = puk; >0, fork=1,2,...,ngandi=1,2,

where fig;, for k =1,2,...,n4 and i = 1,2, denote multipliers of (RNLPS) and p;,
for k=1,2,...,nq and ¢ = 1,2 denote multipliers of (QP(x, Z(x))).

We now show that any index k in Z3-(x)\ 25 (z*) cannot win the comparison test
that defines 7, (4.24). Using (4.15), we obtain that k£ € D(x*). From Assumption
[A4] and (4.26) we determine that at least one of fix; and figz must be positive. If
both are positive, from our assumption 3 we would have that x;, = g2 = 0 and thus
k € D(x) and k ¢ Z5 (x), which would be a contradiction. The only way in which k
can be in Z3(z) is when fiz; > 0 but jigz = 0, and, using (4.26), we also have that
pr1 > 0. In that case we have, since k € Z5 (z), that 41 = 0, 22 < 0, dpy = 0. The
entry corresponding to k in the definition of 7 is

_ e + k2
—Tk2 '

lr2

Using (STAB) in conjunction with 7 < ¢o results in lxa < 0 whenever e is sufficiently
small, and thus k& cannot win the comparison defining 7 (4.24). Similarly an index
in Zi(x)\Zi (z*) cannot win the comparison defining 7, which means that, for z
sufficiently close to z*, we have that 7 is in fact defined by (4.24), and, as a result of
(4.2), by (4.25).

Since d — 0 as € — 0 from (STAB), where here d is the solution of (QP(x, Z(z))),
we obtain that n approaches n* from (FMC) and (STAB) thus, from (FMC), (4.20)
and (STAB) the Lagrange multiplier (v, , uf, b, 1) of (QP(z, Z(x))) approaches the
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fundamental multiplier, whose components are: v*, 7*, ui, ps, n*, as € — 0. Define
now

s Ne
0 = cCoo — E v, — g |7 — .
i=l;+1 j=le+1

Ase — 0, from the definition of vy (4.7), we obtain that 6 will approach coo—v9 = yo >
0. Therefore comparing (QP(x)) with (QPMC(c)), we see that u,ﬂ,u%,ug,n,ﬂ, is a
Lagrange multiplier of (QPMC(c)) for the stationary point (d, —(). Since the solution
is locally unique, due to the Robinson conditions holding at («*,0) for (MPCC(c)) for
e sufficiently small from Lemma 4.1 coupled with (4.14), we obtain that (+d¢ = 0 at
the solution of (QPMC(c)). This proves the claim of part i).

Following (4.26), we obtain that the strongly active constraints from degenerate
pairs are active at the solution of (QPMC(c)). This proves part ii) of the claim.

What is now left to prove is part iii), that the point 2+ d, where d is the solution
of (QPMC(c)), also satisfies the complementarity conditions.

If the index k ¢ D(x), we have that exactly one of xx1, xko is negative, since the
point x satisfies the complementarity constrains. We denote that entry by ;). We
thus have that x;) < 0 and that z,;(;) = 0, where i(k) = 3 —i(k).

The linear constraint from (QPMC(c)) derived from the complementarity con-
straints of (MPCCS) becomes:

Z Triey (Trary + diry) < C+de =0,
ke{1,2,...n. }\D(z)

where the last part of the equation follows part i) of this Theorem. Since ;) +
diiky < 0, from the constraints of (MPCC(c)) and since xy;x) < 0 for k ¢ D(z), it
follows that:

If, on the other hand, we have that k € D(x), then we must have that k € D(z*),
and using Assumption [A4], as well as (4.26) together with our conclusion that the
multiplier of (QPMC(c)) that we constructed approaches the fundamental multiplier
(FMC), we obtain that the least one of the constraints xx1 + dg1 < 0, Tpo + dga <0
is active for the solution of (QPMC(c)). We therefore obtain that the point x + d
satisfies the complementarity constraints, which completes the proof. o

4.3. A superlinearily convergent algorithm. We now state our algorithm
for general nonlinear programming, and then show that, under certain conditions, it
will converge superlinearily when applied to (MPCCS). The problem to be solved is
the following:

min, f(z)
(4.27) sbj. to  gi(z) < 0, i=1,2,....m
hj(zx) = 0, j=1,2,...,m
We assume that g;(x),7=1,2,...,; and ﬁj (x),7=1,2,...,l, are linear constraints

that do not get relaxed in an elastic mode approach.
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2V =2, coo = o, k=0.

NLP: Solve (QP).

Iy, o vf + 30 4 7] < ¢y and (QP) is feasible
2kt =2k  d* k =k + 1, return to NLP.

Else
NLPC: solve (QPC).
mk—H=$k+dk,ck+1zck+547k=k+1.

Tf | 1l + |0k < ¢,

Coo = CooCvys kK =k + 1 return to NLPC.
End If
End If

TABLE 4.1
The elastic mode algorithm

In the algorithm that we describe we use one of the two following quadratic
programs:

ming V. f(z)d + 1d"Wd
(QP) sbj. to  gi(x)d + V.gi(x)Td < 0, i=12,....m

hj(x)d 4V h;(x)"d 0, j=12,...,r
ming g, Vof(z)d+ 3d"Wd + coo(C+de)
(@PC) hi(@)Td+ Vehi(o)d = 0, =12,
—C—de < hj(@)Td+ Vehi(x)d < ¢ +dg, j=le+1,...,r
(+de > 0.

When (QP) is solved, we obtain a direction d and Lagrange multipliers v;, i =
1,2,...,n; and 7, for j = 1,2,...,n.. When (QPC) is solved, we obtain Lagrange
multipliers v, i = 1,2,...,n;; m, 5 = 1,2,...,1;; 7rj+ and T, )= le+1,...,n; and
6. We define the matrix W to be used to in the next quadratic program, which is

either (QP) or (QPC) as follows.

ngf(x) + Z::lhtl Viv?mgi(x) + Z;n:zeﬂ ijizilj(l’)v

. ) if (QP) was last solved
Vi @)+ i1 viViegi(2) + X0 o (7] — 7)) Vighy(a),
if (QPC) was last solved.

We now define our algorithm in Table 4.1. The algorithm depends upon the
parameters c,, ¢, > 1, cg.

The (QP) subproblem of this algorithm is the same subproblem as in the algorithm
by [17], minus the trust-region constraint that is imposed for globalization. The (QPC)
subproblem is the natural extension of (QP) when using the elastic mode. The elastic
mode strategy used here is identical to the one used in SNOPT [22], except that we
use here the L, function.
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Note that once the subproblem (QPC) is solved the algorithm never solves the
problem (QP) again. So we either solve (QP) till convergence or (QPC) till conver-
gence.

We now analyze the effect of applying this algorithm to (MPCC). For this case,
the (QP) subproblem becomes (QP(x)), whereas the (QPC) subproblem becomes
(QPMC(c)).

THEOREM 4.5. Assume that Assumptions [A1]-[A5] hold near a solution x* of
(MPCCS). Assume that the point z* is sufficiently close to x* and either

i) The elastic mode is never invoked, and the algorithm uses at kg, for the
purpose of constructing the matriz W, an estimate of the Lagrange multiplier
that is sufficiently close to a multiplier of (MPCCS).

it) The elastic mode is invoked at ko with coo > vo and at all subsequent iterates,

and the algorithm uses at ko, for the purpose of constructing the matriz W,
an estimate of the Lagrange multiplier that is sufficiently close to a multiplier
of (MPCC(c)), and a ¢* that is sufficiently close to 0.
Then z* converges to x* superlinearily in case i) and (z*,¢*) converges to (z*,0)
superlinearily in case ii).

Proof For case i) to hold, we must have that the test involving the 1 norm of
the nonlinear multipliers is always satisfied. Therefore, for all iteration indices k, we
have that the following inequality holds:

N4 Ne
doowt Do I+t <e

i=l;+1 j=le+1

where the left hand side is composed of multipliers of (QP(z*)). Since we are suffi-
ciently close to z*, this must imply that ¢, > 1. In the latter case, we will have that
a solution of (QP(z*)) can be completed to a solution of (QPMC(c)) with ¢ = 0 and
¢+ =0, and coo = ¢, > 1. We get therefore treat the case i) as a special case of
case ii) to which we now confine our attention. We have the following cases.

e Case 1 coo = 1. In this case, following Lemma 4.1, (MPCC(c)) has a unique
multiplier, and the result from [5] applies to give superlinear convergence of
(2, ¢F) to (a7, 0).

e Case 2 coo > g and (¥ +6¢* =0 for all & > kg. Then the solution obtained
of (QPMC(c)) is a also a solution of (QP(x*)) which is feasible for all z = z*.
The result claimed follows from [16].

e Case 3 coo > 1o and ¢¥0 + 6¢*0 > 0. Then using Theorem 4.3 we obtain that
the point zFot! = g*o 4 dFo where dF° are the components of the solution
of the quadratic program (QPMC(c)) corresponding to z at (z*,¢*), satis-
fies the complementarity constraints and that the strongly active variables
from degenerate pairs are active at the solution of the quadratic program
(QPMC(c)). Using now Theorem 4.4 for all k > ko + 1, we obtain that z*
satisfies the complementarity constraints for k¥ > ko + 1 and that ¢¥ = 0 for
k > ko 4+ 2. The superlinear convergence result again follows from [16].

The proof is complete. o
We have the following observations:

1. We do not prove here the more desirable result that if 2* is sufficiently close
to z* we obtain superlinear convergence to z* or of (z*,(*) to (z*,0). The
difficulty is that, unless we have an estimate for 1, the subsequent iterates
may find themselves far away from z* once the elastic mode is entered. In
effect, if the penalty parameter co, is too small, the iterates may even be
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unbounded, even if the objective function is bounded on the feasible set. Such
an adverse outcome can be prevented only by a global convergence result that
will be the result of future research.

2. From the Theorem 4.3 i), we have that ||¢*|| = O(||d¥|| + |cl’g|)7 so the ¢

update rule from Table 4.1 will not be triggered, for * sufficiently close to
z* and for cs > 9. Therefore, the update rule does not interfere
with super linear convergence. On the other hand, it is also clear that, if
Coo < Vg, then ¢* > 0 and the rule will eventually be triggered assuming that
the iterates approach a stationary point. The test we use here is important
because we do not spend an infinite amount of steps with an inappropriate c.
The complete study of an appropriate rule should also involve global conver-
gence issues, since one possible outcome of the penalty parameter adaptation
rule is to obtain unbounded iterates.

3. The appropriate value of ¢, is vy (or a slightly larger value) which of course
cannot be determined unless we specifically use the MPCC structure. A gen-
eral NLP approach cannot be guaranteed to succeed in determining the ap-
propriate value for ¢, through ¢, by looking at the multipliers of (QPMC(c))
alone, since the Lagrange multiplier set of (MPCCS) is infinite, whereas such
rules are based on the assumption of finiteness of the Lagrange multiplier
set at the solution x* [2]. Whether ¢, can be adaptively defined is a matter
for future research. For NLP implementations, a user-defined value for ¢, is
considered to be an acceptable approach [22].

4. Note that the only meaningful difference between the proofs outlined here and
the ones in [16], once the Theorems 4.3 and 4.4 have been established, is the
one involve in the case where ¢, = vg, for which the well-known result from
[5] has been invoked. Our contribution to this class of super linear convergent
results has been essentially to show that, for the case co, > 1y, the elastic
mode approach, as presented in Table 4.1, will force the algorithm to choose
points that are either always feasible or always satisfy the complementarity
constraints and in so doing we do not have to apriori assume that this holds,
as it was done in [16].

5. Note that we did not use Assumption [A5] and the first part of Assumption
[A4] in the proof of any of the results in Section 4, except when we needed
to invoke results from [16]. The proof of our main helping results Theorem
4.3 and Theorem 4.4 did not need the Assumption [A5] and the first part of
Assumption [A4].
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